BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 11352846)

  • 1. Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog.
    Just A; Ehmke H; Toktomambetova L; Kirchheim HR
    Am J Physiol Renal Physiol; 2001 Jun; 280(6):F1062-71. PubMed ID: 11352846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide blunts myogenic autoregulation in rat renal but not skeletal muscle circulation via tubuloglomerular feedback.
    Just A; Arendshorst WJ
    J Physiol; 2005 Dec; 569(Pt 3):959-74. PubMed ID: 16223765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of angiotensin II in dynamic renal blood flow autoregulation of the conscious dog.
    Just A; Ehmke H; Wittmann U; Kirchheim HR
    J Physiol; 2002 Jan; 538(Pt 1):167-77. PubMed ID: 11773325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics and contribution of mechanisms mediating renal blood flow autoregulation.
    Just A; Arendshorst WJ
    Am J Physiol Regul Integr Comp Physiol; 2003 Sep; 285(3):R619-31. PubMed ID: 12791588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback.
    Just A; Wittmann U; Ehmke H; Kirchheim HR
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):275-90. PubMed ID: 9481688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The step response: a method to characterize mechanisms of renal blood flow autoregulation.
    Wronski T; Seeliger E; Persson PB; Forner C; Fichtner C; Scheller J; Flemming B
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F758-64. PubMed ID: 12851255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel mechanism of renal blood flow autoregulation and the autoregulatory role of A1 adenosine receptors in mice.
    Just A; Arendshorst WJ
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1489-500. PubMed ID: 17728380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal interstitial atp responses to changes in arterial pressure during alterations in tubuloglomerular feedback activity.
    Nishiyama A; Majid DS; Walker M; Miyatake A; Navar LG
    Hypertension; 2001 Feb; 37(2 Pt 2):753-9. PubMed ID: 11230369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation between renal interstitial ATP concentrations and autoregulation-mediated changes in renal vascular resistance.
    Nishiyama A; Majid DS; Taher KA; Miyatake A; Navar LG
    Circ Res; 2000 Mar; 86(6):656-62. PubMed ID: 10747001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tonic and phasic influences of nitric oxide on renal blood flow autoregulation in conscious dogs.
    Just A; Ehmke H; Wittmann U; Kirchheim HR
    Am J Physiol; 1999 Mar; 276(3):F442-9. PubMed ID: 10070168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal interstitial fluid ATP responses to arterial pressure and tubuloglomerular feedback activation during calcium channel blockade.
    Nishiyama A; Jackson KE; Majid DS; Rahman M; Navar LG
    Am J Physiol Heart Circ Physiol; 2006 Feb; 290(2):H772-7. PubMed ID: 16214849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the myogenic response in renal blood flow autoregulation by NO depends on endothelial nitric oxide synthase (eNOS), but not neuronal or inducible NOS.
    Dautzenberg M; Keilhoff G; Just A
    J Physiol; 2011 Oct; 589(Pt 19):4731-44. PubMed ID: 21825026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC.
    Grifoni SC; Chiposi R; McKey SE; Ryan MJ; Drummond HA
    Am J Physiol Renal Physiol; 2010 Feb; 298(2):F285-92. PubMed ID: 19889952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency modulation of renal myogenic autoregulation by perfusion pressure.
    Wang X; Loutzenhiser RD; Cupples WA
    Am J Physiol Regul Integr Comp Physiol; 2007 Sep; 293(3):R1199-204. PubMed ID: 17626123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired renal blood flow autoregulation in two-kidney, one-clip hypertensive rats is caused by enhanced activity of nitric oxide.
    Turkstra E; Braam B; Koomans HA
    J Am Soc Nephrol; 2000 May; 11(5):847-855. PubMed ID: 10770962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous renal blood flow autoregulation curves in conscious sinoaortic baroreceptor-denervated rats.
    Pires SL; Julien C; Chapuis B; Sassard J; Barrès C
    Am J Physiol Renal Physiol; 2002 Jan; 282(1):F51-8. PubMed ID: 11739112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Ca(2+) channel activity on renal hemodynamics during acute attenuation of NO synthesis in the rat.
    Kramp RA; Fourmanoir P; Ladrière L; Joly E; Gerbaux C; El Hajjam A; Caron N
    Am J Physiol Renal Physiol; 2000 Apr; 278(4):F561-9. PubMed ID: 10751216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response.
    Oien AH; Aukland K
    Acta Physiol Scand; 1991 Sep; 143(1):71-92. PubMed ID: 1957708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of renal blood flow autoregulation: dynamics and contributions.
    Just A
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R1-17. PubMed ID: 16990493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of ROMK blocks macula densa tubuloglomerular feedback yet causes renal vasoconstriction in anesthetized rats.
    Araujo M; Welch WJ; Zhou X; Sullivan K; Walsh S; Pasternak A; Wilcox CS
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1120-F1127. PubMed ID: 28228405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.