BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11352903)

  • 1. Characterization of a lidless form of the molecular chaperone DnaK: deletion of the lid increases peptide on- and off-rate constants.
    Buczynski G; Slepenkov SV; Sehorn MG; Witt SN
    J Biol Chem; 2001 Jul; 276(29):27231-6. PubMed ID: 11352903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release.
    Slepenkov SV; Patchen B; Peterson KM; Witt SN
    Biochemistry; 2003 May; 42(19):5867-76. PubMed ID: 12741845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of interdomain coupling in a lidless variant of the molecular chaperone DnaK: DnaK's lid inhibits transition to the low affinity state.
    Slepenkov SV; Witt SN
    Biochemistry; 2002 Oct; 41(40):12224-35. PubMed ID: 12356325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interdomain communication in the molecular chaperone DnaK.
    Han W; Christen P
    Biochem J; 2003 Feb; 369(Pt 3):627-34. PubMed ID: 12383055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of DnaK's lid strengthens binding to the nucleotide exchange factor, GrpE: a kinetic and thermodynamic analysis.
    Chesnokova LS; Slepenkov SV; Protasevich II; Sehorn MG; Brouillette CG; Witt SN
    Biochemistry; 2003 Aug; 42(30):9028-40. PubMed ID: 12885236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone.
    Russell R; Jordan R; McMacken R
    Biochemistry; 1998 Jan; 37(2):596-607. PubMed ID: 9425082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The solution structure of the bacterial HSP70 chaperone protein domain DnaK(393-507) in complex with the peptide NRLLLTG.
    Stevens SY; Cai S; Pellecchia M; Zuiderweg ER
    Protein Sci; 2003 Nov; 12(11):2588-96. PubMed ID: 14573869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ.
    Suh WC; Lu CZ; Gross CA
    J Biol Chem; 1999 Oct; 274(43):30534-9. PubMed ID: 10521435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural dynamics of the DnaK-peptide complex.
    Popp S; Packschies L; Radzwill N; Vogel KP; Steinhoff HJ; Reinstein J
    J Mol Biol; 2005 Apr; 347(5):1039-52. PubMed ID: 15784262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling.
    Montgomery DL; Morimoto RI; Gierasch LM
    J Mol Biol; 1999 Feb; 286(3):915-32. PubMed ID: 10024459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle.
    Banerjee R; Jayaraj GG; Peter JJ; Kumar V; Mapa K
    FEBS J; 2016 Aug; 283(15):2853-68. PubMed ID: 27248857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system.
    Pierpaoli EV; Sandmeier E; Baici A; Schönfeld HJ; Gisler S; Christen P
    J Mol Biol; 1997 Jun; 269(5):757-68. PubMed ID: 9223639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of a concerted conformational change in the ATPase domain of DnaK triggered by peptide binding.
    Slepenkov SV; Witt SN
    FEBS Lett; 2003 Mar; 539(1-3):100-4. PubMed ID: 12650934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multistep mechanism of substrate binding determines chaperone activity of Hsp70.
    Mayer MP; Schröder H; Rüdiger S; Paal K; Laufen T; Bukau B
    Nat Struct Biol; 2000 Jul; 7(7):586-93. PubMed ID: 10876246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The insect antimicrobial peptide, L-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK.
    Chesnokova LS; Slepenkov SV; Witt SN
    FEBS Lett; 2004 May; 565(1-3):65-9. PubMed ID: 15135054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: evidence that a three-step reaction precedes ATP hydrolysis.
    Slepenkov SV; Witt SN
    Biochemistry; 1998 Jan; 37(4):1015-24. PubMed ID: 9454592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the structure of the substrate-free state of the DnaK molecular chaperone.
    Swain JF; Sivendran R; Gierasch LM
    Biochem Soc Symp; 2001; (68):69-82. PubMed ID: 11573348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain.
    Moro F; Fernández-Sáiz V; Muga A
    Protein Sci; 2006 Feb; 15(2):223-33. PubMed ID: 16384998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational properties of bacterial DnaK and yeast mitochondrial Hsp70. Role of the divergent C-terminal alpha-helical subdomain.
    Moro F; Fernández-Sáiz V; Slutsky O; Azem A; Muga A
    FEBS J; 2005 Jun; 272(12):3184-96. PubMed ID: 15955075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional defects of the DnaK756 mutant chaperone of Escherichia coli indicate distinct roles for amino- and carboxyl-terminal residues in substrate and co-chaperone interaction and interdomain communication.
    Buchberger A; Gässler CS; Büttner M; McMacken R; Bukau B
    J Biol Chem; 1999 Dec; 274(53):38017-26. PubMed ID: 10608870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.