BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

850 related articles for article (PubMed ID: 11353014)

  • 21. Discharge and Role of GABA Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recordings in Mice.
    Cissé Y; Ishibashi M; Jost J; Toossi H; Mainville L; Adamantidis A; Leonard CS; Jones BE
    J Neurosci; 2020 Jul; 40(31):5970-5989. PubMed ID: 32576622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation.
    Steriade M; Amzica F; Contreras D
    J Neurosci; 1996 Jan; 16(1):392-417. PubMed ID: 8613806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected].
    Volgushev M; Chauvette S; Mukovski M; Timofeev I
    J Neurosci; 2006 May; 26(21):5665-72. PubMed ID: 16723523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle.
    Mahon S; Vautrelle N; Pezard L; Slaght SJ; Deniau JM; Chouvet G; Charpier S
    J Neurosci; 2006 Nov; 26(48):12587-95. PubMed ID: 17135420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sleep-waking states develop independently in the isolated forebrain and brain stem following early postnatal midbrain transection in cats.
    Villablanca JR; de Andrés I; Olmstead CE
    Neuroscience; 2001; 106(4):717-31. PubMed ID: 11682158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation.
    Lemieux M; Chauvette S; Timofeev I
    J Neurophysiol; 2015 Feb; 113(3):768-79. PubMed ID: 25392176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of network activities on neuronal properties in corticothalamic systems.
    Steriade M
    J Neurophysiol; 2001 Jul; 86(1):1-39. PubMed ID: 11431485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active neocortical processes during quiescent sleep.
    Steriade M
    Arch Ital Biol; 2001 Feb; 139(1-2):37-51. PubMed ID: 11256186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Locus coeruleus neuronal activity during the sleep-waking cycle in mice.
    Takahashi K; Kayama Y; Lin JS; Sakai K
    Neuroscience; 2010 Sep; 169(3):1115-26. PubMed ID: 20542093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mode of firing and rectifying properties of nucleus ovoidalis neurons in the avian auditory thalamus.
    Ströhmann B; Schwarz DW; Puil E
    J Neurophysiol; 1994 Apr; 71(4):1351-60. PubMed ID: 8035219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses.
    Nuñez A; Amzica F; Steriade M
    J Neurophysiol; 1993 Jul; 70(1):418-30. PubMed ID: 8395586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Callosal responses of fast-rhythmic-bursting neurons during slow oscillation in cats.
    Cissé Y; Nita DA; Steriade M; Timofeev I
    Neuroscience; 2007 Jun; 147(2):272-6. PubMed ID: 17524564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice.
    Sakai K
    Neuroscience; 2014 Feb; 260():249-64. PubMed ID: 24355494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spontaneous field potentials influence the activity of neocortical neurons during paroxysmal activities in vivo.
    Grenier F; Timofeev I; Crochet S; Steriade M
    Neuroscience; 2003; 119(1):277-91. PubMed ID: 12763088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A distinct class of slow (~0.2-2 Hz) intrinsically bursting layer 5 pyramidal neurons determines UP/DOWN state dynamics in the neocortex.
    Lőrincz ML; Gunner D; Bao Y; Connelly WM; Isaac JT; Hughes SW; Crunelli V
    J Neurosci; 2015 Apr; 35(14):5442-58. PubMed ID: 25855163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (approximately 40 HZ) spike-bursts at approximately 1000 HZ during waking and rapid eye movement sleep.
    Steriade M; Curró Dossi R; Contreras D
    Neuroscience; 1993 Sep; 56(1):1-9. PubMed ID: 8232908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origin of active states in local neocortical networks during slow sleep oscillation.
    Chauvette S; Volgushev M; Timofeev I
    Cereb Cortex; 2010 Nov; 20(11):2660-74. PubMed ID: 20200108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different Simultaneous Sleep States in the Hippocampus and Neocortex.
    Emrick JJ; Gross BA; Riley BT; Poe GR
    Sleep; 2016 Dec; 39(12):2201-2209. PubMed ID: 27748240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of firing patterns and sensory responsiveness between supraoptic and other hypothalamic neurons in the unanesthetized sheep.
    Jennings DP; Haskins JT; Rogers JM
    Brain Res; 1978 Jun; 149(2):347-64. PubMed ID: 208711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.