These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

850 related articles for article (PubMed ID: 11353014)

  • 41. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep.
    Datta S; Siwek DF
    J Neurophysiol; 1997 Jun; 77(6):2975-88. PubMed ID: 9212250
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: implications for information processing.
    Coenen AM
    Neurosci Biobehav Rev; 1995; 19(3):447-63. PubMed ID: 7566746
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physiological properties of raphe magnus neurons during sleep and waking.
    Leung CG; Mason P
    J Neurophysiol; 1999 Feb; 81(2):584-95. PubMed ID: 10036262
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states.
    Destexhe A; Contreras D; Steriade M
    J Neurosci; 1999 Jun; 19(11):4595-608. PubMed ID: 10341257
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Dynamics of neuronal activity in the lateral preoptic area of hypothalamus in the course of sleep-waking cycle].
    Suntsova NV; Dergacheva OIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2002; 52(5):592-601. PubMed ID: 12449838
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stochastic properties of spontaneous unit discharges in somatosensory cortex and mesencephalic reticular formation during sleep-waking states.
    Yamamoto M; Nakahama H
    J Neurophysiol; 1983 May; 49(5):1182-98. PubMed ID: 6864245
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulation of Purkinje cell response to glutamate during the sleep-waking cycle.
    Andre P; Arrighi P
    Neuroscience; 2001; 105(3):731-46. PubMed ID: 11516837
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The thalamic low-threshold Ca²⁺ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks.
    Crunelli V; Errington AC; Hughes SW; Tóth TI
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1952):3820-39. PubMed ID: 21893530
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2009 Jun; 161(1):269-92. PubMed ID: 19285545
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discharge properties of presumed cholinergic and noncholinergic laterodorsal tegmental neurons related to cortical activation in non-anesthetized mice.
    Sakai K
    Neuroscience; 2012 Nov; 224():172-90. PubMed ID: 22917614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo.
    Destexhe A; Paré D
    J Neurophysiol; 1999 Apr; 81(4):1531-47. PubMed ID: 10200189
    [TBL] [Abstract][Full Text] [Related]  

  • 52. State-dependent slow outlasting activities following neocortical kindling in cats.
    Nita DA; Cissé Y; Timofeev I
    Exp Neurol; 2008 Jun; 211(2):456-68. PubMed ID: 18420200
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Respiratory modulation of neuronal discharge in the central nucleus of the amygdala during sleep and waking states.
    Zhang JX; Harper RM; Frysinger RC
    Exp Neurol; 1986 Jan; 91(1):193-207. PubMed ID: 3940875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sleep and wakefulness modulation of the neuronal firing in the auditory cortex of the guinea pig.
    Peña JL; Pérez-Perera L; Bouvier M; Velluti RA
    Brain Res; 1999 Jan; 816(2):463-70. PubMed ID: 9878870
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neuronal firing patterns in the feline hippocampus during sleep and wakefulness.
    Marczynski TJ; Burns LL; Marczynski GT
    Brain Res; 1980 Mar; 185(1):139-60. PubMed ID: 7353172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuronal firing in the pallidal region: firing patterns during sleep-wakefulness cycle in cats.
    Detari L; Juhasz G; Kukorelli T
    Electroencephalogr Clin Neurophysiol; 1987 Aug; 67(2):159-66. PubMed ID: 2439293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Properties of slow oscillation during slow-wave sleep and anesthesia in cats.
    Chauvette S; Crochet S; Volgushev M; Timofeev I
    J Neurosci; 2011 Oct; 31(42):14998-5008. PubMed ID: 22016533
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex.
    Rudolph M; Pospischil M; Timofeev I; Destexhe A
    J Neurosci; 2007 May; 27(20):5280-90. PubMed ID: 17507551
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hippocampal information processing across sleep/wake cycles.
    Mizuseki K; Miyawaki H
    Neurosci Res; 2017 May; 118():30-47. PubMed ID: 28506629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.