These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 11353070)

  • 1. The Saccharomyces cerevisiae RAD9 cell cycle checkpoint gene is required for optimal repair of UV-induced pyrimidine dimers in both G(1) and G(2)/M phases of the cell cycle.
    Al-Moghrabi NM; Al-Sharif IS; Aboussekhra A
    Nucleic Acids Res; 2001 May; 29(10):2020-5. PubMed ID: 11353070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RAD9-dependent gene trans-activation is required for excision repair of active genes but not for repair of non-transcribed DNA.
    Al-Moghrabi NM; Al-Sharif IS; Aboussekhra A
    Mutat Res; 2009 Apr; 663(1-2):60-8. PubMed ID: 19428371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation.
    de la Torre-Ruiz MA; Green CM; Lowndes NF
    EMBO J; 1998 May; 17(9):2687-98. PubMed ID: 9564050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents.
    Siede W; Friedberg AS; Dianova I; Friedberg EC
    Genetics; 1994 Oct; 138(2):271-81. PubMed ID: 7828811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAD9, RAD24, RAD16 and RAD26 are required for the inducible nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers from the transcribed and non-transcribed regions of the Saccharomyces cerevisiae MFA2 gene.
    Yu S; Teng Y; Lowndes NF; Waters R
    Mutat Res; 2001 Apr; 485(3):229-36. PubMed ID: 11267834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae.
    Siede W; Friedberg AS; Friedberg EC
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):7985-9. PubMed ID: 8367452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.
    Vialard JE; Gilbert CS; Green CM; Lowndes NF
    EMBO J; 1998 Oct; 17(19):5679-88. PubMed ID: 9755168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function.
    Flattery-O'Brien JA; Dawes IW
    J Biol Chem; 1998 Apr; 273(15):8564-71. PubMed ID: 9535829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cisplatin DNA cross-links do not inhibit S-phase and cause only a G2/M arrest in Saccharomyces cerevisiae.
    Grossmann KF; Brown JC; Moses RE
    Mutat Res; 1999 May; 434(1):29-39. PubMed ID: 10377946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Saccharomyces cerevisiae histone acetyltransferase Gcn5 has a role in the photoreactivation and nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers in the MFA2 gene.
    Teng Y; Yu Y; Waters R
    J Mol Biol; 2002 Feb; 316(3):489-99. PubMed ID: 11866513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription.
    Aboussekhra A; Vialard JE; Morrison DE; de la Torre-Ruiz MA; Cernáková L; Fabre F; Lowndes NF
    EMBO J; 1996 Aug; 15(15):3912-22. PubMed ID: 8670896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription-coupled DNA repair in yeast transcription factor IIE (TFIIE) mutants.
    Lommel L; Gregory SM; Becker KI; Sweder KS
    Nucleic Acids Res; 2000 Feb; 28(3):835-42. PubMed ID: 10637337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations.
    Fasullo M; Bennett T; AhChing P; Koudelik J
    Mol Cell Biol; 1998 Mar; 18(3):1190-200. PubMed ID: 9488434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducible nucleotide excision repair (NER) of UV-induced cyclobutane pyrimidine dimers in the cell cycle of the budding yeast Saccharomyces cerevisiae: evidence that inducible NER is confined to the G1 phase of the mitotic cell cycle.
    Scott AD; Waters R
    Mol Gen Genet; 1997 Mar; 254(1):43-53. PubMed ID: 9108289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV-induced de novo protein synthesis enhances nucleotide excision repair efficiency in a transcription-dependent manner in S. cerevisiae.
    Al-Moghrabi NM; Al-Sharif IS; Aboussekhra A
    DNA Repair (Amst); 2003 Nov; 2(11):1185-97. PubMed ID: 14599741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cdc20, a beta-transducin homologue, links RAD9-mediated G2/M checkpoint control to mitosis in Saccharomyces cerevisiae.
    Lim HH; Surana U
    Mol Gen Genet; 1996 Nov; 253(1-2):138-48. PubMed ID: 9003297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage.
    Schiestl RH; Reynolds P; Prakash S; Prakash L
    Mol Cell Biol; 1989 May; 9(5):1882-96. PubMed ID: 2664461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae.
    Navas TA; Sanchez Y; Elledge SJ
    Genes Dev; 1996 Oct; 10(20):2632-43. PubMed ID: 8895664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae.
    Weinert TA; Hartwell LH
    Science; 1988 Jul; 241(4863):317-22. PubMed ID: 3291120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle-independent removal of UV-induced pyrimidine dimers from the promoter and the transcription initiation domain of the human CDC2 gene.
    Tommasi S; Oxyzoglou AB; Pfeifer GP
    Nucleic Acids Res; 2000 Oct; 28(20):3991-8. PubMed ID: 11024179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.