These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 11353079)
1. Incoming nucleotide binds to Klenow ternary complex leading to stable physical sequestration of preceding dNTP on DNA. Ramanathan S; Chary KV; Rao BJ Nucleic Acids Res; 2001 May; 29(10):2097-105. PubMed ID: 11353079 [TBL] [Abstract][Full Text] [Related]
2. Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). Astatke M; Grindley ND; Joyce CM J Biol Chem; 1995 Jan; 270(4):1945-54. PubMed ID: 7829532 [TBL] [Abstract][Full Text] [Related]
3. A conformational change in E. coli DNA polymerase I (Klenow fragment) is induced in the presence of a dNTP complementary to the template base in the active site. Dzantiev L; Romano LJ Biochemistry; 2000 Jan; 39(2):356-61. PubMed ID: 10630996 [TBL] [Abstract][Full Text] [Related]
4. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex. Srivastava A; Singh K; Modak MJ Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054 [TBL] [Abstract][Full Text] [Related]
5. Fingers-closing and other rapid conformational changes in DNA polymerase I (Klenow fragment) and their role in nucleotide selectivity. Joyce CM; Potapova O; Delucia AM; Huang X; Basu VP; Grindley ND Biochemistry; 2008 Jun; 47(23):6103-16. PubMed ID: 18473481 [TBL] [Abstract][Full Text] [Related]
6. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site. Moore BM; Jalluri RK; Doughty MB Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744 [TBL] [Abstract][Full Text] [Related]
7. Significance of nucleobase shape complementarity and hydrogen bonding in the formation and stability of the closed polymerase-DNA complex. Dzantiev L; Alekseyev YO; Morales JC; Kool ET; Romano LJ Biochemistry; 2001 Mar; 40(10):3215-21. PubMed ID: 11258938 [TBL] [Abstract][Full Text] [Related]
8. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs]. Nevinskiĭ GA; Potapova IA; Tarusova NB; Khalabuda OV; Khomov VV Mol Biol (Mosk); 1990; 24(1):104-16. PubMed ID: 2161489 [TBL] [Abstract][Full Text] [Related]
9. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment). Purohit V; Grindley ND; Joyce CM Biochemistry; 2003 Sep; 42(34):10200-11. PubMed ID: 12939148 [TBL] [Abstract][Full Text] [Related]
10. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis. Gestl EE; Eckert KA Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450 [TBL] [Abstract][Full Text] [Related]
11. Interaction of dNTP, pyrophosphate and their analogs with the dNTP-binding sites of E. coli DNA polymerase I Klenow fragment and human DNA polymerase alpha. Potapova IA; Nevinsky GA; Veniaminova AG; Khomov VV; Lavrik OI FEBS Lett; 1990 Dec; 277(1-2):194-6. PubMed ID: 2176614 [TBL] [Abstract][Full Text] [Related]
12. How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides. Astatke M; Grindley ND; Joyce CM J Mol Biol; 1998 Apr; 278(1):147-65. PubMed ID: 9571040 [TBL] [Abstract][Full Text] [Related]
13. Participation of active-site carboxylates of Escherichia coli DNA polymerase I (Klenow fragment) in the formation of a prepolymerase ternary complex. Gangurde R; Modak MJ Biochemistry; 2002 Dec; 41(49):14552-9. PubMed ID: 12463755 [TBL] [Abstract][Full Text] [Related]
14. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection. Garalde DR; Simon CA; Dahl JM; Wang H; Akeson M; Lieberman KR J Biol Chem; 2011 Apr; 286(16):14480-92. PubMed ID: 21362617 [TBL] [Abstract][Full Text] [Related]
15. Minimal kinetic mechanism for misincorporation by DNA polymerase I (Klenow fragment). Eger BT; Benkovic SJ Biochemistry; 1992 Sep; 31(38):9227-36. PubMed ID: 1327109 [TBL] [Abstract][Full Text] [Related]
16. Divalent ions attenuate DNA synthesis by human DNA polymerase α by changing the structure of the template/primer or by perturbing the polymerase reaction. Zhang Y; Baranovskiy AG; Tahirov ET; Tahirov TH; Pavlov YI DNA Repair (Amst); 2016 Jul; 43():24-33. PubMed ID: 27235627 [TBL] [Abstract][Full Text] [Related]
17. A pre-equilibrium before nucleotide binding limits fingers subdomain closure by Klentaq1. Rothwell PJ; Waksman G J Biol Chem; 2007 Sep; 282(39):28884-28892. PubMed ID: 17640877 [TBL] [Abstract][Full Text] [Related]
18. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. Singh K; Modak MJ Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429 [TBL] [Abstract][Full Text] [Related]
19. Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I. Markiewicz RP; Vrtis KB; Rueda D; Romano LJ Nucleic Acids Res; 2012 Sep; 40(16):7975-84. PubMed ID: 22669904 [TBL] [Abstract][Full Text] [Related]
20. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity. Arora K; Beard WA; Wilson SH; Schlick T Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]