BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11353079)

  • 1. Incoming nucleotide binds to Klenow ternary complex leading to stable physical sequestration of preceding dNTP on DNA.
    Ramanathan S; Chary KV; Rao BJ
    Nucleic Acids Res; 2001 May; 29(10):2097-105. PubMed ID: 11353079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment).
    Astatke M; Grindley ND; Joyce CM
    J Biol Chem; 1995 Jan; 270(4):1945-54. PubMed ID: 7829532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conformational change in E. coli DNA polymerase I (Klenow fragment) is induced in the presence of a dNTP complementary to the template base in the active site.
    Dzantiev L; Romano LJ
    Biochemistry; 2000 Jan; 39(2):356-61. PubMed ID: 10630996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex.
    Srivastava A; Singh K; Modak MJ
    Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fingers-closing and other rapid conformational changes in DNA polymerase I (Klenow fragment) and their role in nucleotide selectivity.
    Joyce CM; Potapova O; Delucia AM; Huang X; Basu VP; Grindley ND
    Biochemistry; 2008 Jun; 47(23):6103-16. PubMed ID: 18473481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site.
    Moore BM; Jalluri RK; Doughty MB
    Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of nucleobase shape complementarity and hydrogen bonding in the formation and stability of the closed polymerase-DNA complex.
    Dzantiev L; Alekseyev YO; Morales JC; Kool ET; Romano LJ
    Biochemistry; 2001 Mar; 40(10):3215-21. PubMed ID: 11258938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs].
    Nevinskiĭ GA; Potapova IA; Tarusova NB; Khalabuda OV; Khomov VV
    Mol Biol (Mosk); 1990; 24(1):104-16. PubMed ID: 2161489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment).
    Purohit V; Grindley ND; Joyce CM
    Biochemistry; 2003 Sep; 42(34):10200-11. PubMed ID: 12939148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis.
    Gestl EE; Eckert KA
    Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of dNTP, pyrophosphate and their analogs with the dNTP-binding sites of E. coli DNA polymerase I Klenow fragment and human DNA polymerase alpha.
    Potapova IA; Nevinsky GA; Veniaminova AG; Khomov VV; Lavrik OI
    FEBS Lett; 1990 Dec; 277(1-2):194-6. PubMed ID: 2176614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides.
    Astatke M; Grindley ND; Joyce CM
    J Mol Biol; 1998 Apr; 278(1):147-65. PubMed ID: 9571040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Participation of active-site carboxylates of Escherichia coli DNA polymerase I (Klenow fragment) in the formation of a prepolymerase ternary complex.
    Gangurde R; Modak MJ
    Biochemistry; 2002 Dec; 41(49):14552-9. PubMed ID: 12463755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection.
    Garalde DR; Simon CA; Dahl JM; Wang H; Akeson M; Lieberman KR
    J Biol Chem; 2011 Apr; 286(16):14480-92. PubMed ID: 21362617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimal kinetic mechanism for misincorporation by DNA polymerase I (Klenow fragment).
    Eger BT; Benkovic SJ
    Biochemistry; 1992 Sep; 31(38):9227-36. PubMed ID: 1327109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divalent ions attenuate DNA synthesis by human DNA polymerase α by changing the structure of the template/primer or by perturbing the polymerase reaction.
    Zhang Y; Baranovskiy AG; Tahirov ET; Tahirov TH; Pavlov YI
    DNA Repair (Amst); 2016 Jul; 43():24-33. PubMed ID: 27235627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pre-equilibrium before nucleotide binding limits fingers subdomain closure by Klentaq1.
    Rothwell PJ; Waksman G
    J Biol Chem; 2007 Sep; 282(39):28884-28892. PubMed ID: 17640877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch.
    Singh K; Modak MJ
    Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I.
    Markiewicz RP; Vrtis KB; Rueda D; Romano LJ
    Nucleic Acids Res; 2012 Sep; 40(16):7975-84. PubMed ID: 22669904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity.
    Arora K; Beard WA; Wilson SH; Schlick T
    Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.