BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 11353848)

  • 1. Trypanosoma brucei CTP synthetase: a target for the treatment of African sleeping sickness.
    Hofer A; Steverding D; Chabes A; Brun R; Thelander L
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6412-6. PubMed ID: 11353848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression, purification, characterization, and in vivo targeting of trypanosome CTP synthetase for treatment of African sleeping sickness.
    Fijolek A; Hofer A; Thelander L
    J Biol Chem; 2007 Apr; 282(16):11858-65. PubMed ID: 17331943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel inhibitors of UDP-Glc 4'-epimerase, a validated drug target for african sleeping sickness.
    Urbaniak MD; Tabudravu JN; Msaki A; Matera KM; Brenk R; Jaspars M; Ferguson MA
    Bioorg Med Chem Lett; 2006 Nov; 16(22):5744-7. PubMed ID: 16962325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation and inhibition of CTP synthase from Trypanosoma brucei, the causative agent of African sleeping sickness.
    Steeves CH; Bearne SL
    Bioorg Med Chem Lett; 2011 Sep; 21(18):5188-90. PubMed ID: 21840216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and biological evaluation of CTP synthetase inhibitors as potential agents for the treatment of African trypanosomiasis.
    Tamborini L; Pinto A; Smith TK; Major LL; Iannuzzi MC; Cosconati S; Marinelli L; Novellino E; Lo Presti L; Wong PE; Barrett MP; De Micheli C; Conti P
    ChemMedChem; 2012 Sep; 7(9):1623-34. PubMed ID: 22865834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trypanosome alternative oxidase, a potential therapeutic target for sleeping sickness, is conserved among Trypanosoma brucei subspecies.
    Nakamura K; Fujioka S; Fukumoto S; Inoue N; Sakamoto K; Hirata H; Kido Y; Yabu Y; Suzuki T; Watanabe Y; Saimoto H; Akiyama H; Kita K
    Parasitol Int; 2010 Dec; 59(4):560-4. PubMed ID: 20688188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical validation of GPI biosynthesis as a drug target against African sleeping sickness.
    Smith TK; Crossman A; Brimacombe JS; Ferguson MA
    EMBO J; 2004 Nov; 23(23):4701-8. PubMed ID: 15526036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypanosoma brucei: effects of methoprene and other isoprenoid compounds on procyclic and bloodstream forms in vitro and in mice.
    Harmon MA; Scott TC; Li Y; Boehm MF; Phillips MA; Mangelsdorf DJ
    Exp Parasitol; 1997 Nov; 87(3):229-36. PubMed ID: 9371088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing sleeping sickness control.
    Kinoshita T
    ACS Chem Biol; 2008 Oct; 3(10):601-3. PubMed ID: 18928247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved Model of the Trypanosoma brucei CTP Synthetase Glutaminase Domain-Acivicin Complex.
    Oliveira de Souza J; Dawson A; Hunter WN
    ChemMedChem; 2017 Apr; 12(8):577-579. PubMed ID: 28333400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptides kill African trypanosomes by targeting intracellular compartments and inducing autophagic-like cell death.
    Delgado M; Anderson P; Garcia-Salcedo JA; Caro M; Gonzalez-Rey E
    Cell Death Differ; 2009 Mar; 16(3):406-16. PubMed ID: 19057622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein farnesyl transferase inhibitors for the treatment of malaria and African trypanosomiasis.
    Buckner FS; Eastman RT; Yokoyama K; Gelb MH; Van Voorhis WC
    Curr Opin Investig Drugs; 2005 Aug; 6(8):791-7. PubMed ID: 16121685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Cycle Inhibition To Treat Sleeping Sickness.
    Epting CL; Emmer BT; Du NY; Taylor JM; Makanji MY; Olson CL; Engman DM
    mBio; 2017 Sep; 8(5):. PubMed ID: 28928213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parasite-based screening and proteome profiling reveal orlistat, an FDA-approved drug, as a potential anti Trypanosoma brucei agent.
    Yang PY; Wang M; Liu K; Ngai MH; Sheriff O; Lear MJ; Sze SK; He CY; Yao SQ
    Chemistry; 2012 Jul; 18(27):8403-13. PubMed ID: 22674877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kola acuminata proanthocyanidins: a class of anti-trypanosomal compounds effective against Trypanosoma brucei.
    Kubata BK; Nagamune K; Murakami N; Merkel P; Kabututu Z; Martin SK; Kalulu TM; Huq M; Yoshida M; Ohnishi-Kameyama M; Kinoshita T; Duszenko M; Urade Y
    Int J Parasitol; 2005 Jan; 35(1):91-103. PubMed ID: 15619520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel inhibitors of the trypanosome alternative oxidase inhibit Trypanosoma brucei brucei growth and respiration.
    Ott R; Chibale K; Anderson S; Chipeleme A; Chaudhuri M; Guerrah A; Colowick N; Hill GC
    Acta Trop; 2006 Dec; 100(3):172-84. PubMed ID: 17126803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trypanosoma brucei: killing of bloodstream forms in vitro and in vivo by the cysteine proteinase inhibitor Z-phe-ala-CHN2.
    Scory S; Caffrey CR; Stierhof YD; Ruppel A; Steverding D
    Exp Parasitol; 1999 Apr; 91(4):327-33. PubMed ID: 10092476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GMP synthase is essential for viability and infectivity of Trypanosoma brucei despite a redundant purine salvage pathway.
    Li Q; Leija C; Rijo-Ferreira F; Chen J; Cestari I; Stuart K; Tu BP; Phillips MA
    Mol Microbiol; 2015 Sep; 97(5):1006-20. PubMed ID: 26043892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypanosome alternative oxidase: from molecule to function.
    Chaudhuri M; Ott RD; Hill GC
    Trends Parasitol; 2006 Oct; 22(10):484-91. PubMed ID: 16920028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Trypanosoma brucei MRPA in melarsoprol susceptibility.
    Alibu VP; Richter C; Voncken F; Marti G; Shahi S; Renggli CK; Seebeck T; Brun R; Clayton C
    Mol Biochem Parasitol; 2006 Mar; 146(1):38-44. PubMed ID: 16343658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.