These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Schaerli Y; Wootton RC; Robinson T; Stein V; Dunsby C; Neil MA; French PM; Demello AJ; Abell C; Hollfelder F Anal Chem; 2009 Jan; 81(1):302-6. PubMed ID: 19055421 [TBL] [Abstract][Full Text] [Related]
8. Glass-composite prototyping for flow PCR with in situ DNA analysis. Pjescić I; Tranter C; Hindmarsh PL; Crews ND Biomed Microdevices; 2010 Apr; 12(2):333-43. PubMed ID: 20041349 [TBL] [Abstract][Full Text] [Related]
9. Rapid PCR in a continuous flow device. Hashimoto M; Chen PC; Mitchell MW; Nikitopoulos DE; Soper SA; Murphy MC Lab Chip; 2004 Dec; 4(6):638-45. PubMed ID: 15570378 [TBL] [Abstract][Full Text] [Related]
10. Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Obeid PJ; Christopoulos TK; Crabtree HJ; Backhouse CJ Anal Chem; 2003 Jan; 75(2):288-95. PubMed ID: 12553764 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor. Liu D; Liang G; Lei X; Chen B; Wang W; Zhou X Anal Chim Acta; 2012 Mar; 718():58-63. PubMed ID: 22305898 [TBL] [Abstract][Full Text] [Related]
12. A simple device using magnetic transportation for droplet-based PCR. Ohashi T; Kuyama H; Hanafusa N; Togawa Y Biomed Microdevices; 2007 Oct; 9(5):695-702. PubMed ID: 17505884 [TBL] [Abstract][Full Text] [Related]
13. Chemical amplification: continuous-flow PCR on a chip. Kopp MU; Mello AJ; Manz A Science; 1998 May; 280(5366):1046-8. PubMed ID: 9582111 [TBL] [Abstract][Full Text] [Related]
14. A buoyancy-driven compact thermocycler for rapid PCR. Agrawal N; Ugaz VM Clin Lab Med; 2007 Mar; 27(1):215-23. PubMed ID: 17416315 [TBL] [Abstract][Full Text] [Related]
15. Minimizing the time required for DNA amplification by efficient heat transfer to small samples. Wittwer CT; Fillmore GC; Garling DJ Anal Biochem; 1990 May; 186(2):328-31. PubMed ID: 2363506 [TBL] [Abstract][Full Text] [Related]
16. Novel approach for assessing performance of PCR cyclers used for diagnostic testing. Schoder D; Schmalwieser A; Schauberger G; Hoorfar J; Kuhn M; Wagner M J Clin Microbiol; 2005 Jun; 43(6):2724-8. PubMed ID: 15956389 [TBL] [Abstract][Full Text] [Related]
17. Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes. Hühmer AF; Landers JP Anal Chem; 2000 Nov; 72(21):5507-12. PubMed ID: 11080907 [TBL] [Abstract][Full Text] [Related]
18. Progress in molecular detection with high-speed nucleic acids thermocyclers. Wu H; Zhang S; Chen Y; Qian C; Liu Y; Shen H; Wang Z; Ping J; Wu J; Zhang Y; Chen H J Pharm Biomed Anal; 2020 Oct; 190():113489. PubMed ID: 32791435 [TBL] [Abstract][Full Text] [Related]
19. Parallel-processing continuous-flow device for optimization-free polymerase chain reaction. Kim H; Park N; Hahn JH Anal Bioanal Chem; 2016 Sep; 408(24):6751-8. PubMed ID: 27473429 [TBL] [Abstract][Full Text] [Related]
20. A palmtop PCR system with a disposable polymer chip operated by the thermosiphon effect. Chung KH; Park SH; Choi YH Lab Chip; 2010 Jan; 10(2):202-10. PubMed ID: 20066248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]