BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11354657)

  • 1. Space-filling effects in membrane disruption by cationic amphiphiles.
    Fujiwara T; Hirashima N; Hasegawa S; Nakanishi M; Ohwada T
    Bioorg Med Chem; 2001 Apr; 9(4):1013-24. PubMed ID: 11354657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene transfection activities of amphiphilic steroid-polyamine conjugates.
    Fujiwara T; Hasegawa S; Hirashima N; Nakanishi M; Ohwada T
    Biochim Biophys Acta; 2000 Sep; 1468(1-2):396-402. PubMed ID: 11018682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemolysis of erythrocytes and erythrocyte membrane fluidity changes by new lysosomotropic compounds.
    Kleszczyńska H; Bonarska D; Luczyński J; Witek S; Sarapuk J
    J Fluoresc; 2005 Mar; 15(2):137-41. PubMed ID: 15883768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysis of erythrocytes by phosphatidylcholine containing polyunsaturated fatty acid.
    Kobayashi T; Takahashi K; Yamada A; Nojima S; Inoue K
    J Biochem; 1983 Mar; 93(3):675-80. PubMed ID: 6874658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolysis of human erythrocytes induced by tamoxifen is related to disruption of membrane structure.
    Cruz Silva MM; Madeira VM; Almeida LM; Custódio JB
    Biochim Biophys Acta; 2000 Mar; 1464(1):49-61. PubMed ID: 10704919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of PAMAM dendrimers on human red blood cells.
    Domański DM; Klajnert B; Bryszewska M
    Bioelectrochemistry; 2004 Jun; 63(1-2):189-91. PubMed ID: 15110271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of polyoxyethylene chain length on erythrocyte hemolysis induced by poly[oxyethylene (n) nonylphenol] non-ionic surfactants.
    Galembeck E; Alonso A; Meirelles NC
    Chem Biol Interact; 1998 May; 113(2):91-103. PubMed ID: 9717511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hemolytic activity of six arachnid cationic peptides is affected by the phosphatidylcholine-to-sphingomyelin ratio in lipid bilayers.
    Belokoneva OS; Villegas E; Corzo G; Dai L; Nakajima T
    Biochim Biophys Acta; 2003 Oct; 1617(1-2):22-30. PubMed ID: 14637016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dramatic influence of the orientation of linker between hydrophilic and hydrophobic lipid moiety in liposomal gene delivery.
    Rajesh M; Sen J; Srujan M; Mukherjee K; Sreedhar B; Chaudhuri A
    J Am Chem Soc; 2007 Sep; 129(37):11408-20. PubMed ID: 17718562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent hemolytic activity of membrane pore-forming peptide toxin, tolaasin.
    Cho KH; Wang HS; Kim YK
    J Pept Sci; 2010 Feb; 16(2):85-90. PubMed ID: 19960443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of short-chain aralkyl alcohols and amines with the erythrocyte membrane.
    Crifò C; Bozzi A; Quadri S; Cardelli P; Strom R
    Biochem Exp Biol; 1978; 14(2):137-41. PubMed ID: 88950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of hemolysis and erythrocyte transformation caused by lipogrammistin-A, a lipophilic and acylated cyclic polyamine from the skin secretion of soapfishes (Grammistidae).
    Kobayashi Y; Onuki H; Tachibana K
    Bioorg Med Chem; 1999 Sep; 7(9):2073-81. PubMed ID: 10530957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of diltiazem on the physicochemical properties of rat erythrocyte and liposome membrane: comparison with pentoxifylline and propranolol.
    Sasaki Y; Morita T; Takeyama S
    Jpn J Pharmacol; 1984 Apr; 34(4):417-27. PubMed ID: 6328086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte membrane stabilization by plant saponins and sapogenins.
    Abe H; Sakaguchi M; Anno M; Arichi S
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Jun; 316(3):262-5. PubMed ID: 7254368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemolysis of phosphatidylcholine-containing erythrocytes by serratamic acid from Serratia marcescens.
    Miyazaki Y; Hara-Hotta H; Matsuyama T; Yano I
    Int J Biochem; 1992 Jul; 24(7):1033-8. PubMed ID: 1397496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genistein abrogates pre-hemolytic and oxidative stress damage induced by 2,2'-Azobis (Amidinopropane).
    Colado Simão AN; Suzukawa AA; Casado MF; Oliveira RD; Guarnier FA; Cecchini R
    Life Sci; 2006 Feb; 78(11):1202-10. PubMed ID: 16242158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the inclusion mode of beta-cyclodextrin sulfate and its effect on the chlorpromazine-induced hemolysis of rabbit erythrocytes.
    Shiotani K; Uehata K; Irie T; Hirayama F; Uekama K
    Chem Pharm Bull (Tokyo); 1994 Nov; 42(11):2332-7. PubMed ID: 7859332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anchoring cationic amphiphiles for nucleotide delivery: significance of DNA release from cationic liposomes for transfection.
    Hirashima N; Minatani K; Hattori Y; Ohwada T; Nakanishi M
    Biol Pharm Bull; 2007 Jun; 30(6):1117-22. PubMed ID: 17541164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biopharmaceutical studies on neuroleptic butyrophenones. II. Stabilization of rat erythrocyte membrane (author's transl)].
    Aimoto T; Masunari T; Murata T
    Yakugaku Zasshi; 1979 Jan; 99(1):106-8. PubMed ID: 430337
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of nonionic amphiphiles at sublytic concentrations on the erythrocyte membrane.
    Isomaa B; Hägerstrand H
    Cell Biochem Funct; 1988 Jul; 6(3):183-90. PubMed ID: 2842083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.