These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11355456)

  • 1. Issues related to solution chemistry in mercury sampling impingers.
    Linak WP; Ryan JV; Ghorishi BS; Wendt JO
    J Air Waste Manag Assoc; 2001 May; 51(5):688-98. PubMed ID: 11355456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confounding effects of aqueous-phase impinger chemistry on apparent oxidation of mercury in flue gases.
    Cauch B; Silcox GD; Lighty JS; Wendt JO; Fry A; Senior CL
    Environ Sci Technol; 2008 Apr; 42(7):2594-9. PubMed ID: 18505002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of iodine based impinger solutions for the efficient capture of Hg0 using direct injection nebulization-inductively coupled plasma mass spectrometry analysis.
    Hedrick E; Lee TG; Biswas P; Zhuang Y
    Environ Sci Technol; 2001 Sep; 35(18):3764-73. PubMed ID: 11783657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of coal combustion flue gas components on low-level chlorine speciation using EPA method 26A.
    Sun JQ; Crocker CR; Lillemoen CM
    J Air Waste Manag Assoc; 2000 Jun; 50(6):936-40. PubMed ID: 10902386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas-phase elemental mercury removal in a simulated combustion flue gas using TiO2 with fluorescent light.
    Cho JH; Lee TG; Eom Y
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1208-13. PubMed ID: 23155867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.
    Lee CW; Srivastava RK; Ghorishi SB; Hastings TW; Stevens FM
    J Air Waste Manag Assoc; 2004 Dec; 54(12):1560-6. PubMed ID: 15648394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fate and behavior of mercury in coal-fired power plants.
    Meij R; Vredenbregt LH; te Winkel H
    J Air Waste Manag Assoc; 2002 Aug; 52(8):912-7. PubMed ID: 12184689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface compositions of carbon sorbents exposed to simulated low-rank coal flue gases.
    Olson ES; Crocker CR; Benson SA; Pavlish JH; Holmes MJ
    J Air Waste Manag Assoc; 2005 Jun; 55(6):747-54. PubMed ID: 16022412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of mercury in flue gas based on an aluminum matrix sorbent.
    Wang J; Xu W; Wang X; Wang W
    ScientificWorldJournal; 2011; 11():2469-79. PubMed ID: 22235178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion.
    Otero-Rey JR; López-Vilariño JM; Moreda-Piñeiro J; Alonso-Rodríguez E; Muniategui-Lorenzo S; López-Mahía P; Prada-Rodríguez D
    Environ Sci Technol; 2003 Nov; 37(22):5262-7. PubMed ID: 14655716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.
    Meischen SJ; Van Pelt VJ; Zarate EA; Stephens EA
    J Air Waste Manag Assoc; 2004 Jan; 54(1):60-7. PubMed ID: 14871013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions.
    Zhao Y; Mann MD; Olson ES; Pavlish JH; Dunham GE
    J Air Waste Manag Assoc; 2006 May; 56(5):628-35. PubMed ID: 16739799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a mercury transformation model in coal combustion flue gas.
    Zhuang Y; Thompson JS; Zygarlicke CJ; Pavlish JH
    Environ Sci Technol; 2004 Nov; 38(21):5803-8. PubMed ID: 15575303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of gas-phase mercury speciation using detailed chemical kinetics.
    Edwards JR; Srivastava RK; Kilgroe JD
    J Air Waste Manag Assoc; 2001 Jun; 51(6):869-77. PubMed ID: 11417678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
    Liu SH; Yan NQ; Liu ZR; Qu Z; Wang HP; Chang SG; Miller C
    Environ Sci Technol; 2007 Feb; 41(4):1405-12. PubMed ID: 17593749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases.
    Lee CW; Srivastava RK; Ghorishi SB; Karwowski J; Hastings TW; Hirschi JC
    J Air Waste Manag Assoc; 2006 May; 56(5):643-9. PubMed ID: 16739801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified on-line monitoring of total gaseous mercury in flue gases using Semtech Hg 2000 analyzer.
    Feng X; Sommar J; Abul-Milh M; Hong B; Strömberg D; Lindqvist O
    Fresenius J Anal Chem; 2000 Nov; 368(5):528-33. PubMed ID: 11227538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation on speciation and removal efficiencies of mercury from municipal solid waste incinerators in Taiwan.
    Chang MB; Wu HT; Huang CK
    Sci Total Environ; 2000 Feb; 246(2-3):165-73. PubMed ID: 10696721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of NOx control processes on mercury speciation in utility flue gas.
    Richardson C; Machalek T; Miller S; Dene C; Chang R
    J Air Waste Manag Assoc; 2002 Aug; 52(8):941-7. PubMed ID: 12184693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.