BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11355706)

  • 1. Analysis of the DNA substrate structure and number of the processing sites on the activities of HIV-1 integrase in vitro.
    Sayasith K; Sauvé G; Yelle J
    Mol Cells; 2001 Apr; 11(2):231-40. PubMed ID: 11355706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient gap repair catalyzed in vitro by an intrinsic DNA polymerase activity of human immunodeficiency virus type 1 integrase.
    Acel A; Udashkin BE; Wainberg MA; Faust EA
    J Virol; 1998 Mar; 72(3):2062-71. PubMed ID: 9499061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of DNA modifications on DNA processing by HIV-1 integrase and inhibitor binding: role of DNA backbone flexibility and an open catalytic site.
    Johnson AA; Sayer JM; Yagi H; Patil SS; Debart F; Maier MA; Corey DR; Vasseur JJ; Burke TR; Marquez VE; Jerina DM; Pommier Y
    J Biol Chem; 2006 Oct; 281(43):32428-38. PubMed ID: 16943199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations.
    Vincent KA; Ellison V; Chow SA; Brown PO
    J Virol; 1993 Jan; 67(1):425-37. PubMed ID: 8416376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate features important for recognition and catalysis by human immunodeficiency virus type 1 integrase identified by using novel DNA substrates.
    Chow SA; Brown PO
    J Virol; 1994 Jun; 68(6):3896-907. PubMed ID: 8189526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of human flap endonuclease 1 by human immunodeficiency virus type 1 integrase: possible role for flap endonuclease 1 in 5'-end processing of human immunodeficiency virus type 1 integration intermediates.
    Faust EA; Triller H
    J Biomed Sci; 2002; 9(3):273-87. PubMed ID: 12065902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of mutations in residues near the active site of human immunodeficiency virus type 1 integrase on specific enzyme-substrate interactions.
    Gerton JL; Ohgi S; Olsen M; DeRisi J; Brown PO
    J Virol; 1998 Jun; 72(6):5046-55. PubMed ID: 9573274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing of HIV-1 integrase/DNA interactions using novel analogs of viral DNA.
    Agapkina J; Smolov M; Barbe S; Zubin E; Zatsepin T; Deprez E; Le Bret M; Mouscadet JF; Gottikh M
    J Biol Chem; 2006 Apr; 281(17):11530-40. PubMed ID: 16500899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of disintegration activity of catalytic core domain of HIV-1 integrase using molecular beacon.
    Zhang DW; Zhao MM; He HQ; Guo SX
    Anal Biochem; 2013 Sep; 440(2):120-2. PubMed ID: 23747532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereospecificity of reactions catalyzed by HIV-1 integrase.
    Gerton JL; Herschlag D; Brown PO
    J Biol Chem; 1999 Nov; 274(47):33480-7. PubMed ID: 10559232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Juxtaposition of two viral DNA ends in a bimolecular disintegration reaction mediated by multimers of human immunodeficiency virus type 1 or murine leukemia virus integrase.
    Chow SA; Brown PO
    J Virol; 1994 Dec; 68(12):7869-78. PubMed ID: 7966577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Interactions of HIV-1 DNA heterocyclic bases with viral DNA].
    Agapkina IuIu; Tashlitskiĭ VN; Deprez E; Brochon JC; Shugaliĭ AV; Mouscadet JF; Gottikh MB
    Mol Biol (Mosk); 2004; 38(5):848-57. PubMed ID: 15554187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of recombinant HIV-1 integrase on mini-HIV DNA.
    Cherepanov P; Surratt D; Toelen J; Pluymers W; Griffith J; De Clercq E; Debyser Z
    Nucleic Acids Res; 1999 May; 27(10):2202-10. PubMed ID: 10219094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of enzymatic activities of the HIV-1 and HFV integrases to their U5 LTR substrates.
    Oh YT; Shin CG
    Biochem Mol Biol Int; 1999 Apr; 47(4):621-9. PubMed ID: 10319414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors.
    Czyz A; Stillmock KA; Hazuda DJ; Reznikoff WS
    Biochemistry; 2007 Sep; 46(38):10776-89. PubMed ID: 17725323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of HIV-1 integrase preferences for target site selection with various oligonucleotides.
    Snásel J; Rosenberg I; Paces O; Pichová I
    Arch Biochem Biophys; 2009 Aug; 488(2):153-62. PubMed ID: 19549503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the late steps in HIV-1 retroviral integrase-catalyzed DNA integration.
    Brin E; Yi J; Skalka AM; Leis J
    J Biol Chem; 2000 Dec; 275(50):39287-95. PubMed ID: 11006285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermolecular disintegration and intramolecular strand transfer activities of wild-type and mutant HIV-1 integrase.
    Mazumder A; Engelman A; Craigie R; Fesen M; Pommier Y
    Nucleic Acids Res; 1994 Mar; 22(6):1037-43. PubMed ID: 8152908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and random mutagenesis analysis of the region carrying the catalytic E152 amino acid of HIV-1 integrase.
    Calmels C; de Soultrait VR; Caumont A; Desjobert C; Faure A; Fournier M; Tarrago-Litvak L; Parissi V
    Nucleic Acids Res; 2004; 32(4):1527-38. PubMed ID: 14999095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro assays for activities of retroviral integrase.
    Chow SA
    Methods; 1997 Aug; 12(4):306-17. PubMed ID: 9245611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.