These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 11355856)
1. Identification and quantitation of unique fatty acid oxidation products in human atherosclerotic plaque using high-performance liquid chromatography. Waddington E; Sienuarine K; Puddey I; Croft K Anal Biochem; 2001 May; 292(2):234-44. PubMed ID: 11355856 [TBL] [Abstract][Full Text] [Related]
2. Fatty acid oxidation products in human atherosclerotic plaque: an analysis of clinical and histopathological correlates. Waddington EI; Croft KD; Sienuarine K; Latham B; Puddey IB Atherosclerosis; 2003 Mar; 167(1):111-20. PubMed ID: 12618275 [TBL] [Abstract][Full Text] [Related]
3. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. McEvoy TG; Coull GD; Broadbent PJ; Hutchinson JS; Speake BK J Reprod Fertil; 2000 Jan; 118(1):163-70. PubMed ID: 10793638 [TBL] [Abstract][Full Text] [Related]
4. Fatty acid-induced toxicity and neutral lipid accumulation in insulin-producing RINm5F cells. Azevedo-Martins AK; Monteiro AP; Lima CL; Lenzen S; Curi R Toxicol In Vitro; 2006 Oct; 20(7):1106-13. PubMed ID: 16644178 [TBL] [Abstract][Full Text] [Related]
5. Activation of human polymorphonuclear leukocytes by products derived from the peroxidation of human red blood cell membranes. Hall LM; Murphy RC Chem Res Toxicol; 1998 Sep; 11(9):1024-31. PubMed ID: 9760276 [TBL] [Abstract][Full Text] [Related]
6. Targeted quantitative analysis of fatty acids in atherosclerotic plaques by high sensitivity liquid chromatography/tandem mass spectrometry. Pettinella C; Lee SH; Cipollone F; Blair IA J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):168-76. PubMed ID: 17174160 [TBL] [Abstract][Full Text] [Related]
7. Fatty acid composition and chemotaxonomic evaluation of species of Stachys. Gören AC; Akçicek E; Dirmenci T; Kilic T; Mozioğlu E; Yilmaz H Nat Prod Res; 2012; 26(1):84-90. PubMed ID: 21859257 [TBL] [Abstract][Full Text] [Related]
8. 7-HETE, 10-HETE, and 13-HETE are major products of NADPH-dependent arachidonic acid metabolism in rat liver microsomes: analysis of their stereochemistry, and the stereochemistry of their acid-catalyzed rearrangement. Brash AR; Boeglin WE; Capdevila JH; Yeola S; Blair IA Arch Biochem Biophys; 1995 Aug; 321(2):485-92. PubMed ID: 7646075 [TBL] [Abstract][Full Text] [Related]
9. [Study on lipids and other volatile constituents in Pheretima aspergillum]. Yang D; Wang F; Peng J; Xiao L; Su W Zhong Yao Cai; 2000 Jan; 23(1):31-3. PubMed ID: 12575114 [TBL] [Abstract][Full Text] [Related]
10. [Studies on chemical constituents of fat oil of Polygala tenuifolia]. Sun X; Shi S; Yang G Zhong Yao Cai; 2000 Jan; 23(1):35-7. PubMed ID: 12575116 [TBL] [Abstract][Full Text] [Related]
11. Fatty acid composition of the milk lipids of Nepalese women: correlation between fatty acid composition of serum phospholipids and melting point. Glew RH; Huang YS; Vander Jagt TA; Chuang LT; Bhatt SK; Magnussen MA; VanderJagt DJ Prostaglandins Leukot Essent Fatty Acids; 2001 Sep; 65(3):147-56. PubMed ID: 11728165 [TBL] [Abstract][Full Text] [Related]
12. Cell-mediated oxidation of LDL: comparison of different cell types of the atherosclerotic lesion. Müller K; Carpenter KL; Mitchinson MJ Free Radic Res; 1998 Sep; 29(3):207-20. PubMed ID: 9802552 [TBL] [Abstract][Full Text] [Related]
13. In vivo action of 15-lipoxygenase in early stages of human atherogenesis. Kühn H; Heydeck D; Hugou I; Gniwotta C J Clin Invest; 1997 Mar; 99(5):888-93. PubMed ID: 9062346 [TBL] [Abstract][Full Text] [Related]
14. Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Kim JY; Kinoshita M; Ohnishi M; Fukui Y Reproduction; 2001 Jul; 122(1):131-8. PubMed ID: 11425337 [TBL] [Abstract][Full Text] [Related]
15. Identification of fatty acids and fatty acid amides in human meibomian gland secretions. Nichols KK; Ham BM; Nichols JJ; Ziegler C; Green-Church KB Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):34-9. PubMed ID: 17197513 [TBL] [Abstract][Full Text] [Related]
16. Absorption of 13C-labeled stearic, oleic, and linoleic acids in humans: application to breath tests. Jones PJ; Pencharz PB; Clandinin MT J Lab Clin Med; 1985 Jun; 105(6):647-52. PubMed ID: 3998617 [TBL] [Abstract][Full Text] [Related]
17. [Analysis of fatty acids in leaves of Loropetalum chinense and L. chinense var. rubrum by GC-MS]. Tang H; Zheng QF; Ge G; Xue XW; Yan AP; Peng L; Sun BT Zhong Yao Cai; 2011 Oct; 34(10):1549-52. PubMed ID: 22372144 [TBL] [Abstract][Full Text] [Related]
18. Variations in fatty acid composition of neem seeds collected from the Rajasthan state of India. Kaushik N; Vir S Biochem Soc Trans; 2000 Dec; 28(6):880-2. PubMed ID: 11171243 [TBL] [Abstract][Full Text] [Related]
19. Gas chromatographic/mass spectrometric analysis of high-performance liquid chromatographic fractions reflecting arachidonic acid metabolism in mouse peritoneal macrophages. Abián J; Bioque G; Bulbena O; Roselló J; Gelpí E Biol Mass Spectrom; 1992 Feb; 21(2):69-79. PubMed ID: 1606184 [TBL] [Abstract][Full Text] [Related]
20. Formation of monohydroxy derivatives of arachidonic acid, linoleic acid, and oleic acid during oxidation of low density lipoprotein by copper ions and endothelial cells. Wang T; Yu WG; Powell WS J Lipid Res; 1992 Apr; 33(4):525-37. PubMed ID: 1527476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]