BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11356017)

  • 1. Cell type-specific expression of fasciclin II isoforms reveals neuronal-glial interactions during peripheral nerve growth.
    Wright JW; Copenhaver PF
    Dev Biol; 2001 Jun; 234(1):24-41. PubMed ID: 11356017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different isoforms of fasciclin II play distinct roles in the guidance of neuronal migration during insect embryogenesis.
    Wright JW; Copenhaver PF
    Dev Biol; 2000 Sep; 225(1):59-78. PubMed ID: 10964464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of two different isoforms of fasciclin II during postembryonic central nervous system remodeling in Manduca sexta.
    Kuehn C; Duch C
    Cell Tissue Res; 2008 Dec; 334(3):477-98. PubMed ID: 18953569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remodeling of motor terminals during metamorphosis of the moth Manduca sexta: expression patterns of two distinct isoforms of Manduca fasciclin II.
    Knittel LM; Copenhaver PF; Kent KS
    J Comp Neurol; 2001 May; 434(1):69-85. PubMed ID: 11329130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different isoforms of fasciclin II are expressed by a subset of developing olfactory receptor neurons and by olfactory-nerve glial cells during formation of glomeruli in the moth Manduca sexta.
    Higgins MR; Gibson NJ; Eckholdt PA; Nighorn A; Copenhaver PF; Nardi J; Tolbert LP
    Dev Biol; 2002 Apr; 244(1):134-54. PubMed ID: 11900464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormone-dependent expression of fasciclin II during ganglionic migration and fusion in the ventral nerve cord of the moth Manduca sexta.
    Himes KE; Klukas KA; Fahrbach SE; Mesce KA
    J Comp Neurol; 2008 Jul; 509(3):319-39. PubMed ID: 18481278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression and functions of neuronal and glial neurofascin isoforms and splice variants during PNS development.
    Basak S; Raju K; Babiarz J; Kane-Goldsmith N; Koticha D; Grumet M
    Dev Biol; 2007 Nov; 311(2):408-22. PubMed ID: 17936266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila Neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper.
    Stork T; Thomas S; Rodrigues F; Silies M; Naffin E; Wenderdel S; Klämbt C
    Development; 2009 Apr; 136(8):1251-61. PubMed ID: 19261699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategic expression of ion transport peptide gene products in central and peripheral neurons of insects.
    Dai L; Zitnan D; Adams ME
    J Comp Neurol; 2007 Jan; 500(2):353-67. PubMed ID: 17111378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for fasciclin II in the guidance of neuronal migration.
    Wright JW; Snyder MA; Schwinof KM; Combes S; Copenhaver PF
    Development; 1999 Jun; 126(14):3217-28. PubMed ID: 10375511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A contactin-receptor-like protein tyrosine phosphatase beta complex mediates adhesive communication between astroglial cells and gonadotrophin-releasing hormone neurones.
    Parent AS; Mungenast AE; Lomniczi A; Sandau US; Peles E; Bosch MA; Rønnekleiv OK; Ojeda SR
    J Neuroendocrinol; 2007 Nov; 19(11):847-59. PubMed ID: 17927663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral glia direct axon guidance across the CNS/PNS transition zone.
    Sepp KJ; Schulte J; Auld VJ
    Dev Biol; 2001 Oct; 238(1):47-63. PubMed ID: 11783993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro analyses of interactions between olfactory receptor growth cones and glial cells that mediate axon sorting and glomerulus formation.
    Tucker ES; Oland LA; Tolbert LP
    J Comp Neurol; 2004 May; 472(4):478-95. PubMed ID: 15065121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The L1-CAM, Neuroglian, functions in glial cells for Drosophila antennal lobe development.
    Chen W; Hing H
    Dev Neurobiol; 2008 Jul; 68(8):1029-45. PubMed ID: 18446783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of TROY-expressing cells in the developing and postnatal CNS: the possible role in neuronal and glial cell development.
    Hisaoka T; Morikawa Y; Komori T; Sugiyama T; Kitamura T; Senba E
    Eur J Neurosci; 2006 Jun; 23(12):3149-60. PubMed ID: 16820005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sculpting the nervous system: glial control of neuronal development.
    Freeman MR
    Curr Opin Neurobiol; 2006 Feb; 16(1):119-25. PubMed ID: 16387489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal and glial expression of the adhesion molecule TAG-1 is regulated after peripheral nerve lesion or central neurodegeneration of adult nervous system.
    Soares S; Traka M; von Boxberg Y; Bouquet C; Karagogeos D; Nothias F
    Eur J Neurosci; 2005 Mar; 21(5):1169-80. PubMed ID: 15813926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A brief look at glial cells.
    Jessen KR
    Novartis Found Symp; 2006; 276():5-14; discussion 54-7, 275-81. PubMed ID: 16805420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The many faces of fasciclin II: Genetic analysis reveals multiple roles for a cell adhesion molecule during the generation of neuronal specificity.
    Goodman CS; Davis GW; Zito K
    Cold Spring Harb Symp Quant Biol; 1997; 62():479-91. PubMed ID: 9598382
    [No Abstract]   [Full Text] [Related]  

  • 20. Bidirectional influences between neurons and glial cells in the developing olfactory system.
    Tolbert LP; Oland LA; Tucker ES; Gibson NJ; Higgins MR; Lipscomb BW
    Prog Neurobiol; 2004 Jun; 73(2):73-105. PubMed ID: 15201035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.