BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11356167)

  • 1. Impact of the intramitochondrial enzyme organization on fatty acid oxidation.
    Liang X; Le W; Zhang D; Schulz H
    Biochem Soc Trans; 2001 May; 29(Pt 2):279-82. PubMed ID: 11356167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2,6-Dimethylheptanoyl-CoA is a specific substrate for long-chain acyl-CoA dehydrogenase (LCAD): evidence for a major role of LCAD in branched-chain fatty acid oxidation.
    Wanders RJ; Denis S; Ruiter JP; IJlst L; Dacremont G
    Biochim Biophys Acta; 1998 Jul; 1393(1):35-40. PubMed ID: 9714723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for intermediate channeling in mitochondrial beta-oxidation.
    Nada MA; Rhead WJ; Sprecher H; Schulz H; Roe CR
    J Biol Chem; 1995 Jan; 270(2):530-5. PubMed ID: 7822275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Participation of peroxisomes in the metabolism of xenobiotic acyl compounds: comparison between peroxisomal and mitochondrial beta-oxidation of omega-phenyl fatty acids in rat liver.
    Yamada J; Ogawa S; Horie S; Watanabe T; Suga T
    Biochim Biophys Acta; 1987 Sep; 921(2):292-301. PubMed ID: 3651489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial β-oxidation of saturated fatty acids in humans.
    Adeva-Andany MM; Carneiro-Freire N; Seco-Filgueira M; Fernández-Fernández C; Mouriño-Bayolo D
    Mitochondrion; 2019 May; 46():73-90. PubMed ID: 29551309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-chain acyl-CoA dehydrogenase is a key enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids.
    Lea W; Abbas AS; Sprecher H; Vockley J; Schulz H
    Biochim Biophys Acta; 2000 May; 1485(2-3):121-8. PubMed ID: 10832093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of fatty acid transport protein and mitochondrial and peroxisomal beta-oxidation gene expression by fatty acids in developing rats.
    Ouali F; Djouadi F; Merlet-Bénichou C; Riveau B; Bastin J
    Pediatr Res; 2000 Nov; 48(5):691-6. PubMed ID: 11044493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse.
    Cox KB; Hamm DA; Millington DS; Matern D; Vockley J; Rinaldo P; Pinkert CA; Rhead WJ; Lindsey JR; Wood PA
    Hum Mol Genet; 2001 Sep; 10(19):2069-77. PubMed ID: 11590124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4-bromotiglic acid, a novel inhibitor of thiolases and a tool for assessing the cooperation between the membrane-bound and soluble beta-oxidation systems of rat liver mitochondria.
    Liang X; Schulz H
    Biochemistry; 1998 Nov; 37(44):15548-54. PubMed ID: 9799519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial beta-oxidation of 2-methyl fatty acids in rat liver.
    Mao LF; Chu C; Luo MJ; Simon A; Abbas AS; Schulz H
    Arch Biochem Biophys; 1995 Aug; 321(1):221-8. PubMed ID: 7639525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramitochondrial fatty acid metabolism: riboflavin deficiency and energy production.
    Parsons HG; Dias VC
    Biochem Cell Biol; 1991 Jul; 69(7):490-7. PubMed ID: 1793560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4-Bromo-2-octenoic acid specifically inactivates 3-ketoacyl-CoA thiolase and thereby fatty acid oxidation in rat liver mitochondria.
    Li JX; Schulz H
    Biochemistry; 1988 Aug; 27(16):5995-6000. PubMed ID: 3191104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase.
    Yang SY; He XY; Schulz H
    J Biol Chem; 1987 Sep; 262(27):13027-32. PubMed ID: 3654601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria.
    Carpenter K; Pollitt RJ; Middleton B
    Biochem Biophys Res Commun; 1992 Mar; 183(2):443-8. PubMed ID: 1550553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse models for disorders of mitochondrial fatty acid beta-oxidation.
    Schuler AM; Wood PA
    ILAR J; 2002; 43(2):57-65. PubMed ID: 11917157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role and organization of peroxisomal beta-oxidation.
    Van Veldhoven PP; Mannaerts GP
    Adv Exp Med Biol; 1999; 466():261-72. PubMed ID: 10709653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma free fatty acids in mitochondrial fatty acid oxidation defects.
    Martínez G; Jiménez-Sánchez G; Divry P; Vianey-Saban C; Riudor E; Rodés M; Briones P; Ribes A
    Clin Chim Acta; 1997 Nov; 267(2):143-54. PubMed ID: 9469249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase can be a source of mitochondrial hydrogen peroxide.
    Zhang Y; Bharathi SS; Beck ME; Goetzman ES
    Redox Biol; 2019 Sep; 26():101253. PubMed ID: 31234015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase.
    Clark-Taylor T; Clark-Taylor BE
    Med Hypotheses; 2004; 62(6):970-5. PubMed ID: 15142659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of acyl-CoA and acylcarnitine esters accumulated during abnormal mitochondrial fatty acid oxidation.
    Kler RS; Jackson S; Bartlett K; Bindoff LA; Eaton S; Pourfarzam M; Frerman FE; Goodman SI; Watmough NJ; Turnbull DM
    J Biol Chem; 1991 Dec; 266(34):22932-8. PubMed ID: 1744086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.