These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11356422)

  • 21. Caterpillar-Induced Volatile Emissions in Cotton: The Relative Importance of Damage and Insect-Derived Factors.
    Arce CM; Besomi G; Glauser G; Turlings TCJ
    Front Plant Sci; 2021; 12():709858. PubMed ID: 34413869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of volicitin-related compounds from the regurgitant of lepidopteran caterpillars.
    Mori N; Yoshinaga N; Sawada Y; Fukui M; Shimoda M; Fujisaki K; Nishida R; Kuwahara Y
    Biosci Biotechnol Biochem; 2003 May; 67(5):1168-71. PubMed ID: 12834303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Susceptibility of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) to Vip3A insecticidal protein expressed in VipCot™ cotton.
    Ali MI; Luttrell RG
    J Invertebr Pathol; 2011 Oct; 108(2):76-84. PubMed ID: 21767545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatty acid amides, previously identified in caterpillars, found in the cricket Teleogryllus taiwanemma and fruit fly Drosophila melanogaster larvae.
    Yoshinaga N; Aboshi T; Ishikawa C; Fukui M; Shimoda M; Nishida R; Lait CG; Tumlinson JH; Mori N
    J Chem Ecol; 2007 Jul; 33(7):1376-81. PubMed ID: 17566833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maize genes induced by herbivory and volicitin.
    Lawrence SD; Novak NG
    J Chem Ecol; 2004 Dec; 30(12):2543-57. PubMed ID: 15724970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential activity and degradation of plant volatile elicitors in regurgitant of tobacco hornworm (Manduca sexta) larvae.
    Alborn HT; Brennan MM; Tumlinson JH
    J Chem Ecol; 2003 Jun; 29(6):1357-72. PubMed ID: 12918921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential Levels of Fatty Acid-Amino Acid Conjugates in the Oral Secretions of Lepidopteran Larvae Account for the Different Profiles of Volatiles.
    Ling X; Gu S; Tian C; Guo H; Degen T; Turlings TCJ; Ge F; Sun Y
    Pest Manag Sci; 2021 Sep; 77(9):3970-3979. PubMed ID: 33866678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Key Plant-Associated Volatiles Emitted by Heliothis virescens Larvae that Attract the Parasitoid, Microplitis croceipes: Implications for Parasitoid Perception of Odor Blends.
    Morawo T; Fadamiro H
    J Chem Ecol; 2016 Nov; 42(11):1112-1121. PubMed ID: 27722877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae.
    Yoshinaga N; Aboshi T; Abe H; Nishida R; Alborn HT; Tumlinson JH; Mori N
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):18058-63. PubMed ID: 18997016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential detoxification of gossypol by UDP-glycosyltransferases in the two Heliothine moth species Helicoverpa armigera and Heliothis virescens.
    Krempl C; Sporer T; Reichelt M; Ahn SJ; Heidel-Fischer H; Vogel H; Heckel DG; Joußen N
    Insect Biochem Mol Biol; 2016 Apr; 71():49-57. PubMed ID: 26873292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concerted biosynthesis of an insect elicitor of plant volatiles.
    Paré PW; Alborn HT; Tumlinson JH
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13971-5. PubMed ID: 9811910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of racemic, (+)- and (-)-gossypol on survival and development of Heliothis virescens larvae.
    Stipanovic RD; López JD; Dowd MK; Puckhaber LS; Duke SE
    Environ Entomol; 2008 Oct; 37(5):1081-5. PubMed ID: 19036185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species.
    Ahn SJ; Badenes-Pérez FR; Heckel DG
    J Insect Physiol; 2011 Sep; 57(9):1212-9. PubMed ID: 21704632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient incorporation of unsaturated fatty acids into volicitin-related compounds in Spodoptera litura (Lepidoptera: Noctuidae).
    Aboshi T; Yoshinaga N; Noge K; Nishida R; Mori N
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):607-10. PubMed ID: 17284824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative pathogenesis of Helicoverpa zea S nucleopolyhedrovirus in noctuid larvae.
    Washburn JO; Wong JF; Volkman LE
    J Gen Virol; 2001 Jul; 82(Pt 7):1777-1784. PubMed ID: 11413390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in cuticular lipid composition of the antennae of Helicoverpa zea, Heliothis virescens, and Manduca sexta.
    Böröczky K; Park KC; Minard RD; Jones TH; Baker TC; Tumlinson JH
    J Insect Physiol; 2008; 54(10-11):1385-91. PubMed ID: 18703068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spodoptera litura larvae are attracted by HvAV-3h-infected S. litura larvae-damaged pepper leaves.
    Ming L; Du YW; Yuan GG; Su Q; Shi XB; Yu H; Chen G
    Pest Manag Sci; 2023 Aug; 79(8):2713-2724. PubMed ID: 36905637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical crypsis in the avoidance of natural enemies by an insect herbivore.
    De Moraes CM; Mescher MC
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8993-7. PubMed ID: 15184664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in trace metals in hemolymph of baculovirus-infected noctuid larvae.
    Popham HJ; Sun R; Shelby KS; Robertson JD
    Biol Trace Elem Res; 2012 Jun; 146(3):325-34. PubMed ID: 22083423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) populations to Cry1Ac insecticidal protein.
    Ali MI; Luttrell RG; Young SY
    J Econ Entomol; 2006 Feb; 99(1):164-75. PubMed ID: 16573337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.