BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11356615)

  • 1. Nitric oxide inhibition abolishes sleep-wake differences in cerebral circulation.
    Zoccoli G; Grant DA; Wild J; Walker AM
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2598-606. PubMed ID: 11356615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sympathetic withdrawal augments cerebral blood flow during acute hypercapnia in sleeping lambs.
    Cassaglia PA; Griffiths RI; Walker AM
    Sleep; 2008 Dec; 31(12):1729-34. PubMed ID: 19090329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral sympathetic nerve activity has a major regulatory role in the cerebral circulation in REM sleep.
    Cassaglia PA; Griffiths RI; Walker AM
    J Appl Physiol (1985); 2009 Apr; 106(4):1050-6. PubMed ID: 19150858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sympathetic nervous control of the cerebral circulation in sleep.
    Loos N; Grant DA; Wild J; Paul S; Barfield C; Zoccoli G; Franzini C; Walker AM
    J Sleep Res; 2005 Sep; 14(3):275-83. PubMed ID: 16120102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulation of the cerebral circulation during sleep in newborn lambs.
    Grant DA; Franzini C; Wild J; Eede KJ; Walker AM
    J Physiol; 2005 May; 564(Pt 3):923-30. PubMed ID: 15760939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral response to haemodilution during cardiopulmonary bypass in dogs: the role of nitric oxide synthase.
    Plöchl W; Liam BL; Cook DJ; Orszulak TA
    Br J Anaesth; 1999 Feb; 82(2):237-43. PubMed ID: 10365001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep-related changes in the regulation of cerebral blood flow in newborn lambs.
    Silvani A; Bojic T; Franzini C; Lenzi P; Walker AM; Grant DA; Wild J; Zoccoli G
    Sleep; 2004 Feb; 27(1):36-41. PubMed ID: 14998235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NO synthase inhibition modulates NMDA-induced changes in cerebral blood flow and EEG activity.
    Pelligrino DA; Gay RL; Baughman VL; Wang Q
    Am J Physiol; 1996 Sep; 271(3 Pt 2):H990-5. PubMed ID: 8853333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between nitric oxide synthase inhibitor induced oscillations and the activation flow coupling response.
    Ances BM; Greenberg JH; Detre JA
    Brain Res; 2010 Jan; 1309():19-28. PubMed ID: 19900416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of nitric oxide synthesis in cardiovascular responses to acute hypoxia in the late gestation sheep fetus.
    Green LR; Bennet L; Hanson MA
    J Physiol; 1996 Nov; 497 ( Pt 1)(Pt 1):271-7. PubMed ID: 8951728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of coronary artery endothelial dysfunction in the sleeping lamb.
    Hamilton GS; Edwards B; Solin P; Walker AM
    Sleep Med; 2006 Oct; 7(7):573-9. PubMed ID: 16996308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fetal cerebral and peripheral circulatory responses to hypoxia after nitric oxide synthase inhibition.
    Harris AP; Helou S; Gleason CA; Traystman RJ; Koehler RC
    Am J Physiol Regul Integr Comp Physiol; 2001 Aug; 281(2):R381-90. PubMed ID: 11448839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dose-related effects of nitric oxide synthase inhibition on cerebral blood flow during isoflurane and pentobarbital anesthesia.
    Todd MM; Wu B; Warner DS; Maktabi M
    Anesthesiology; 1994 May; 80(5):1128-36. PubMed ID: 7517107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nitric oxide in the regulation of cerebral blood flow in the ovine foetus.
    McCrabb GJ; Harding R
    Clin Exp Pharmacol Physiol; 1996; 23(10-11):855-60. PubMed ID: 8911725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical NOS inhibition raises the lower limit of cerebral blood flow-arterial pressure autoregulation.
    Jones SC; Radinsky CR; Furlan AJ; Chyatte D; Perez-Trepichio AD
    Am J Physiol; 1999 Apr; 276(4):H1253-62. PubMed ID: 10199850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance through endothelial nitric oxide mechanism.
    Wilkerson MK; Lesniewski LA; Golding EM; Bryan RM; Amin A; Wilson E; Delp MD
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1652-61. PubMed ID: 15576439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitric oxide blockade on the lower limit of the cortical cerebral autoregulation in pentobarbital-anaesthetized rats.
    Preckel MP; Leftheriotis G; Ferber C; Degoute CS; Banssillon V; Saumet JL
    Int J Microcirc Clin Exp; 1996; 16(6):277-83. PubMed ID: 9049705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of nitric oxide synthase does not alter dynamic cerebral autoregulation in humans.
    Zhang R; Wilson TE; Witkowski S; Cui J; Crandall GG; Levine BD
    Am J Physiol Heart Circ Physiol; 2004 Mar; 286(3):H863-9. PubMed ID: 15008160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebrovascular effects of nitric oxide manipulation in spontaneously hypertensive rats.
    Fouyas IP; Kelly PA; Ritchie IM; Whittle IR
    Br J Pharmacol; 1997 May; 121(1):49-56. PubMed ID: 9146886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral blood flow and cerebrovascular reactivity after inhibition of nitric oxide synthesis in conscious goats.
    Fernández N; García JL; García-Villalón AL; Monge L; Gómez B; Diéguez G
    Br J Pharmacol; 1993 Sep; 110(1):428-34. PubMed ID: 8220904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.