BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 11356627)

  • 1. Nitric oxide decreases pacemaker activity in lymphatic vessels of guinea pig mesentery.
    von der Weid PY; Zhao J; Van Helden DF
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2707-16. PubMed ID: 11356627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of histamine on the contractile and electrical activity in isolated lymphatic vessels of the guinea-pig mesentery.
    Fox JL; von der Weid PY
    Br J Pharmacol; 2002 Aug; 136(8):1210-8. PubMed ID: 12163355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasoactive intestinal polypeptide inhibits pacemaker activity via the nitric oxide-cGMP-protein kinase G pathway in the interstitial cells of Cajal of the murine small intestine.
    Kim BJ; Lee JH; Jun JY; Chang IY; So I; Kim KW
    Mol Cells; 2006 Jun; 21(3):337-42. PubMed ID: 16819295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial photobiomodulation improves insulin therapy in diabetic microglial reactivity and the brain drainage system.
    Liu S; Li D; Yu T; Zhu J; Semyachkina-Glushkovskaya O; Zhu D
    Commun Biol; 2023 Dec; 6(1):1239. PubMed ID: 38066234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage.
    Li D; Liu S; Yu T; Liu Z; Sun S; Bragin D; Shirokov A; Navolokin N; Bragina O; Hu Z; Kurths J; Fedosov I; Blokhina I; Dubrovski A; Khorovodov A; Terskov A; Tzoy M; Semyachkina-Glushkovskaya O; Zhu D
    Nat Commun; 2023 Sep; 14(1):6104. PubMed ID: 37775549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edema and lymphatic clearance: molecular mechanisms and ongoing challenges.
    Breslin JW
    Clin Sci (Lond); 2023 Sep; 137(18):1451-1476. PubMed ID: 37732545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K
    Davis MJ; Kim HJ; Nichols CG
    Am J Physiol Cell Physiol; 2022 Oct; 323(4):C1018-C1035. PubMed ID: 35785984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymphatic Collecting Vessel: New Perspectives on Mechanisms of Contractile Regulation and Potential Lymphatic Contractile Pathways to Target in Obesity and Metabolic Diseases.
    Lee Y; Zawieja SD; Muthuchamy M
    Front Pharmacol; 2022; 13():848088. PubMed ID: 35355722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Off-Target Effect of Lovastatin Disrupts Dietary Lipid Uptake and Dissemination through Pro-Drug Inhibition of the Mesenteric Lymphatic Smooth Muscle Cell Contractile Apparatus.
    Stephens M; Roizes S; von der Weid PY
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms underlying spontaneous phasic contractions and sympathetic control of smooth muscle in the rat caudal epididymis.
    Mitsui R; Hashitani H; Lang RJ; van Helden DF
    Pflugers Arch; 2021 Dec; 473(12):1925-1938. PubMed ID: 34596752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphatic microcirculation profile in the progression of hypertension in spontaneously hypertensive rats.
    Wang B; Sheng Y; Li Y; Li B; Zhang J; Li A; Liu M; Zhang H; Xiu R
    Microcirculation; 2022 Oct; 29(6-7):e12724. PubMed ID: 34351675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-conductance calcium-activated K
    Kim HJ; Li M; Nichols CG; Davis MJ
    Br J Pharmacol; 2021 Oct; 178(20):4119-4136. PubMed ID: 34213021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent Lymphatic Transport and Peripheral Tissue Immunity.
    Steele MM; Lund AW
    J Immunol; 2021 Jan; 206(2):264-272. PubMed ID: 33397740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lymphatic Vessels and Their Surroundings: How Local Physical Factors Affect Lymph Flow.
    Solari E; Marcozzi C; Negrini D; Moriondo A
    Biology (Basel); 2020 Dec; 9(12):. PubMed ID: 33322476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal lymphatic vessel dynamics.
    Shelton EL; Yang HC; Zhong J; Salzman MM; Kon V
    Am J Physiol Renal Physiol; 2020 Dec; 319(6):F1027-F1036. PubMed ID: 33103446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Lymphatic Vascular Function in Metabolic Disorders.
    Norden PR; Kume T
    Front Physiol; 2020; 11():404. PubMed ID: 32477160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-type, but not L-type, voltage-gated calcium channels are dispensable for lymphatic pacemaking and spontaneous contractions.
    To KHT; Gui P; Li M; Zawieja SD; Castorena-Gonzalez JA; Davis MJ
    Sci Rep; 2020 Jan; 10(1):70. PubMed ID: 31919478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathophysiology of aged lymphatic vessels.
    Shang T; Liang J; Kapron CM; Liu J
    Aging (Albany NY); 2019 Aug; 11(16):6602-6613. PubMed ID: 31461408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ano1 mediates pressure-sensitive contraction frequency changes in mouse lymphatic collecting vessels.
    Zawieja SD; Castorena JA; Gui P; Li M; Bulley SA; Jaggar JH; Rock JR; Davis MJ
    J Gen Physiol; 2019 Apr; 151(4):532-554. PubMed ID: 30862712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lymphatic Vessel Network Structure and Physiology.
    Breslin JW; Yang Y; Scallan JP; Sweat RS; Adderley SP; Murfee WL
    Compr Physiol; 2018 Dec; 9(1):207-299. PubMed ID: 30549020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.