BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11356633)

  • 1. Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure.
    Fridez P; Rachev A; Meister JJ; Hayashi K; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2752-60. PubMed ID: 11356633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A constitutive formulation of arterial mechanics including vascular smooth muscle tone.
    Zulliger MA; Rachev A; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2004 Sep; 287(3):H1335-43. PubMed ID: 15130890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of conduit artery vascular smooth muscle tone to induced hypertension.
    Fridez P; Makino A; Kakoi D; Miyazaki H; Meister JJ; Hayashi K; Stergiopulos N
    Ann Biomed Eng; 2002; 30(7):905-16. PubMed ID: 12398421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of longitudinal stretch on VSM tone and distensibility of muscular conduit arteries.
    Zulliger MA; Kwak NT; Tsapikouni T; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2599-605. PubMed ID: 12388322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometrical, functional, and histomorphometric adaptation of rat carotid artery in induced hypertension.
    Fridez P; Zulliger M; Bobard F; Montorzi G; Miyazaki H; Hayashi K; Stergiopulos N
    J Biomech; 2003 May; 36(5):671-80. PubMed ID: 12694997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular smooth muscle cell stress as a determinant of cerebral artery myogenic tone.
    Brekke JF; Gokina NI; Osol G
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2210-6. PubMed ID: 12388264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-Term biomechanical adaptation of the rat carotid to acute hypertension: contribution of smooth muscle.
    Fridez P; Makino A; Miyazaki H; Meister JJ; Hayashi K; Stergiopulos N
    Ann Biomed Eng; 2001 Jan; 29(1):26-34. PubMed ID: 11219505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of serum response factor contributes to decrease vascular muscular tone and arterial stiffness in mice.
    Galmiche G; Labat C; Mericskay M; Aissa KA; Blanc J; Retailleau K; Bourhim M; Coletti D; Loufrani L; Gao-Li J; Feil R; Challande P; Henrion D; Decaux JF; Regnault V; Lacolley P; Li Z
    Circ Res; 2013 Mar; 112(7):1035-45. PubMed ID: 23426017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for geometric and mechanical adaptation of arteries to sustained hypertension.
    Rachev A; Stergiopulos N; Meister JJ
    J Biomech Eng; 1998 Feb; 120(1):9-17. PubMed ID: 9675674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical adaptation of porcine carotid vascular smooth muscle to hypo and hypertension in vitro.
    Zulliger MA; Montorzi G; Stergiopulos N
    J Biomech; 2002 Jun; 35(6):757-65. PubMed ID: 12020995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smooth muscle tone alters arterial stiffness: the importance of the extracellular matrix to vascular smooth muscle stiffness ratio.
    Pewowaruk RJ; Gepner AD
    J Hypertens; 2022 Mar; 40(3):512-519. PubMed ID: 34751172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover.
    Gleason RL; Humphrey JD
    J Vasc Res; 2004; 41(4):352-63. PubMed ID: 15353893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remodeling of the arterial wall: Response to restoration of normal blood flow after flow reduction.
    Hayashi K; Kakoi D; Makino A
    Biorheology; 2018; 54(2-4):95-108. PubMed ID: 29376846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative contribution of Rho kinase and protein kinase C to myogenic tone in rat cerebral arteries in hypertension.
    Jarajapu YP; Knot HJ
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H1917-22. PubMed ID: 15980039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated microgravity effects on the rat carotid and femoral arteries: role of contractile protein expression and mechanical properties of the vessel wall.
    Hwang S; Shelkovnikov SA; Purdy RE
    J Appl Physiol (1985); 2007 Apr; 102(4):1595-603. PubMed ID: 17218426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the in-series and in-parallel contribution of elastin assessed by a structure-based biomechanical model of the arterial wall.
    Roy S; Tsamis A; Prod'hom G; Stergiopulos N
    J Biomech; 2008; 41(4):737-43. PubMed ID: 18456913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of biomechanical and histological properties in dog carotid arteries injured by neointima or intimal thickening.
    Goto H; Mizuno R; Ono N; Sakaguchi M; Ohhashi T
    Jpn J Physiol; 2005 Dec; 55(6):355-64. PubMed ID: 16368015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of active tone in the mouse descending thoracic aorta under acute changes in loading.
    Murtada SI; Lewin S; Arner A; Humphrey JD
    Biomech Model Mechanobiol; 2016 Jun; 15(3):579-92. PubMed ID: 26220455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of rat middle cerebral arteries with and without myogenic tone.
    Coulson RJ; Cipolla MJ; Vitullo L; Chesler NC
    J Biomech Eng; 2004 Feb; 126(1):76-81. PubMed ID: 15171132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potential role of smooth muscle tone in early hypertension: a theoretical study.
    Humphrey JD; Wilson E
    J Biomech; 2003 Nov; 36(11):1595-601. PubMed ID: 14522200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.