These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 11356633)
1. Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure. Fridez P; Rachev A; Meister JJ; Hayashi K; Stergiopulos N Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2752-60. PubMed ID: 11356633 [TBL] [Abstract][Full Text] [Related]
2. A constitutive formulation of arterial mechanics including vascular smooth muscle tone. Zulliger MA; Rachev A; Stergiopulos N Am J Physiol Heart Circ Physiol; 2004 Sep; 287(3):H1335-43. PubMed ID: 15130890 [TBL] [Abstract][Full Text] [Related]
3. Adaptation of conduit artery vascular smooth muscle tone to induced hypertension. Fridez P; Makino A; Kakoi D; Miyazaki H; Meister JJ; Hayashi K; Stergiopulos N Ann Biomed Eng; 2002; 30(7):905-16. PubMed ID: 12398421 [TBL] [Abstract][Full Text] [Related]
4. Effects of longitudinal stretch on VSM tone and distensibility of muscular conduit arteries. Zulliger MA; Kwak NT; Tsapikouni T; Stergiopulos N Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2599-605. PubMed ID: 12388322 [TBL] [Abstract][Full Text] [Related]
5. Geometrical, functional, and histomorphometric adaptation of rat carotid artery in induced hypertension. Fridez P; Zulliger M; Bobard F; Montorzi G; Miyazaki H; Hayashi K; Stergiopulos N J Biomech; 2003 May; 36(5):671-80. PubMed ID: 12694997 [TBL] [Abstract][Full Text] [Related]
6. Vascular smooth muscle cell stress as a determinant of cerebral artery myogenic tone. Brekke JF; Gokina NI; Osol G Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2210-6. PubMed ID: 12388264 [TBL] [Abstract][Full Text] [Related]
7. Short-Term biomechanical adaptation of the rat carotid to acute hypertension: contribution of smooth muscle. Fridez P; Makino A; Miyazaki H; Meister JJ; Hayashi K; Stergiopulos N Ann Biomed Eng; 2001 Jan; 29(1):26-34. PubMed ID: 11219505 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of serum response factor contributes to decrease vascular muscular tone and arterial stiffness in mice. Galmiche G; Labat C; Mericskay M; Aissa KA; Blanc J; Retailleau K; Bourhim M; Coletti D; Loufrani L; Gao-Li J; Feil R; Challande P; Henrion D; Decaux JF; Regnault V; Lacolley P; Li Z Circ Res; 2013 Mar; 112(7):1035-45. PubMed ID: 23426017 [TBL] [Abstract][Full Text] [Related]
9. A model for geometric and mechanical adaptation of arteries to sustained hypertension. Rachev A; Stergiopulos N; Meister JJ J Biomech Eng; 1998 Feb; 120(1):9-17. PubMed ID: 9675674 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical adaptation of porcine carotid vascular smooth muscle to hypo and hypertension in vitro. Zulliger MA; Montorzi G; Stergiopulos N J Biomech; 2002 Jun; 35(6):757-65. PubMed ID: 12020995 [TBL] [Abstract][Full Text] [Related]
11. Smooth muscle tone alters arterial stiffness: the importance of the extracellular matrix to vascular smooth muscle stiffness ratio. Pewowaruk RJ; Gepner AD J Hypertens; 2022 Mar; 40(3):512-519. PubMed ID: 34751172 [TBL] [Abstract][Full Text] [Related]
12. A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. Gleason RL; Humphrey JD J Vasc Res; 2004; 41(4):352-63. PubMed ID: 15353893 [TBL] [Abstract][Full Text] [Related]
13. Remodeling of the arterial wall: Response to restoration of normal blood flow after flow reduction. Hayashi K; Kakoi D; Makino A Biorheology; 2018; 54(2-4):95-108. PubMed ID: 29376846 [TBL] [Abstract][Full Text] [Related]
14. Relative contribution of Rho kinase and protein kinase C to myogenic tone in rat cerebral arteries in hypertension. Jarajapu YP; Knot HJ Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H1917-22. PubMed ID: 15980039 [TBL] [Abstract][Full Text] [Related]
15. Simulated microgravity effects on the rat carotid and femoral arteries: role of contractile protein expression and mechanical properties of the vessel wall. Hwang S; Shelkovnikov SA; Purdy RE J Appl Physiol (1985); 2007 Apr; 102(4):1595-603. PubMed ID: 17218426 [TBL] [Abstract][Full Text] [Related]
16. On the in-series and in-parallel contribution of elastin assessed by a structure-based biomechanical model of the arterial wall. Roy S; Tsamis A; Prod'hom G; Stergiopulos N J Biomech; 2008; 41(4):737-43. PubMed ID: 18456913 [TBL] [Abstract][Full Text] [Related]
17. Comparison of biomechanical and histological properties in dog carotid arteries injured by neointima or intimal thickening. Goto H; Mizuno R; Ono N; Sakaguchi M; Ohhashi T Jpn J Physiol; 2005 Dec; 55(6):355-64. PubMed ID: 16368015 [TBL] [Abstract][Full Text] [Related]
18. Adaptation of active tone in the mouse descending thoracic aorta under acute changes in loading. Murtada SI; Lewin S; Arner A; Humphrey JD Biomech Model Mechanobiol; 2016 Jun; 15(3):579-92. PubMed ID: 26220455 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties of rat middle cerebral arteries with and without myogenic tone. Coulson RJ; Cipolla MJ; Vitullo L; Chesler NC J Biomech Eng; 2004 Feb; 126(1):76-81. PubMed ID: 15171132 [TBL] [Abstract][Full Text] [Related]
20. A potential role of smooth muscle tone in early hypertension: a theoretical study. Humphrey JD; Wilson E J Biomech; 2003 Nov; 36(11):1595-601. PubMed ID: 14522200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]