These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11356633)

  • 21. A theoretical model for the myogenic response based on the length-tension characteristics of vascular smooth muscle.
    Carlson BE; Secomb TW
    Microcirculation; 2005 Jun; 12(4):327-38. PubMed ID: 16020079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased diameter and enhanced myogenic response of saphenous vein induced by two-week experimental orthostasis are reversible.
    Raffai G; Lódi C; Illyés G; Nádasy G; Monos E
    Physiol Res; 2008; 57(2):175-183. PubMed ID: 17298205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Comparison of biomechanical behavior of cerebral and mesenteric small arteries of simulated microgravity rats].
    Cheng JH; Boscolo M; Lin LJ; Bai YG; Zhang X; Ma J; Zhang LF
    Sheng Li Xue Bao; 2009 Aug; 61(4):386-94. PubMed ID: 19701592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age related constitutive laws and stress distribution in human main coronary arteries with reference to residual strain.
    Valenta J; Vitek K; Cihak R; Konvickova S; Sochor M; Horny L
    Biomed Mater Eng; 2002; 12(2):121-34. PubMed ID: 12122236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries.
    Rachev A; Hayashi K
    Ann Biomed Eng; 1999; 27(4):459-68. PubMed ID: 10468230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of graded changes in vasomotor tone on the carotid arterial mechanics in live spontaneously hypertensive rats.
    Lacolley P; Ghodsi N; Glazer E; Challande P; Brissac AM; Safar ME; Laurent S
    Br J Pharmacol; 1995 Aug; 115(7):1235-44. PubMed ID: 7582551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of propofol on neural and endothelial control of in situ rat mesenteric vascular smooth muscle transmembrane potentials.
    Yamazaki M; Nagakawa T; Hatakeyama N; Shibuya N; Stekiel TA
    Anesth Analg; 2002 Apr; 94(4):892-7, table of contents. PubMed ID: 11916792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical relevance of the microstructure in artery walls with a focus on passive and active components.
    Holzapfel GA; Ogden RW
    Am J Physiol Heart Circ Physiol; 2018 Sep; 315(3):H540-H549. PubMed ID: 29799274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall.
    Liu X; El-Mahdy MA; Boslett J; Varadharaj S; Hemann C; Abdelghany TM; Ismail RS; Little SC; Zhou D; Thuy LT; Kawada N; Zweier JL
    Nat Commun; 2017 Apr; 8():14807. PubMed ID: 28393874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus.
    Bank AJ; Wang H; Holte JE; Mullen K; Shammas R; Kubo SH
    Circulation; 1996 Dec; 94(12):3263-70. PubMed ID: 8989139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myogenic tone, reactivity, and forced dilatation: a three-phase model of in vitro arterial myogenic behavior.
    Osol G; Brekke JF; McElroy-Yaggy K; Gokina NI
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2260-7. PubMed ID: 12388265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries.
    Kochová P; Kuncová J; Svíglerová J; Cimrman R; Miklíková M; Liška V; Tonar Z
    Physiol Meas; 2012 Aug; 33(8):1335-51. PubMed ID: 22813960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. System and method for investigating arterial remodeling.
    Rachev A; Dominguez Z; Vito R
    J Biomech Eng; 2009 Oct; 131(10):104501. PubMed ID: 19831489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response of arterial smooth muscle to length perturbation.
    Seow CY
    J Appl Physiol (1985); 2000 Nov; 89(5):2065-72. PubMed ID: 11053363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A structural model of the venous wall considering elastin anisotropy.
    Rezakhaniha R; Stergiopulos N
    J Biomech Eng; 2008 Jun; 130(3):031017. PubMed ID: 18532866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical response of arterial wall to DOCA-salt hypertension in growing and middle-aged rats.
    Hayashi K; Sugimoto T
    J Biomech; 2007; 40(7):1583-93. PubMed ID: 17045273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High sodium intake decreases pressure-induced (myogenic) tone and flow-induced dilation in resistance arteries from hypertensive rats.
    Matrougui K; Schiavi P; Guez D; Henrion D
    Hypertension; 1998 Jul; 32(1):176-9. PubMed ID: 9674657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of a sustained extension on arterial growth and remodeling: a theoretical study.
    Gleason RL; Humphrey JD
    J Biomech; 2005 Jun; 38(6):1255-61. PubMed ID: 15863110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanics models predict increasing smooth muscle tone as a novel therapeutic target for central arterial dysfunction in hypertension.
    Pewowaruk RJ; Colebank MJ; Spronck B; Korcarz CE; Gepner AD
    J Hypertens; 2023 Apr; 41(4):572-579. PubMed ID: 36728092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composition of connective tissues and morphometry of vascular smooth muscle in arterial wall of DOCA-salt hypertensive rats - In relation with arterial remodeling.
    Hayashi K; Shimizu E
    J Biomech; 2016 May; 49(7):1225-1229. PubMed ID: 26987272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.