BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11356644)

  • 41. Argatroban administration reduces leukocyte adhesion and improves capillary perfusion within the intestinal microcirculation in experimental sepsis.
    Fuchs C; Ladwig E; Zhou J; Pavlovic D; Behrend K; Whynot S; Hung O; Murphy M; Cerny V; Lehmann C
    Thromb Haemost; 2010 Nov; 104(5):1022-8. PubMed ID: 20806115
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidation of iron-nitrosyl-hemoglobin by dehydroascorbic acid releases nitric oxide to form nitrite in human erythrocytes.
    Sibmooh N; Piknova B; Rizzatti F; Schechter AN
    Biochemistry; 2008 Mar; 47(9):2989-96. PubMed ID: 18225862
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microvascular function and rheologic changes in hyperdynamic sepsis.
    Astiz ME; DeGent GE; Lin RY; Rackow EC
    Crit Care Med; 1995 Feb; 23(2):265-71. PubMed ID: 7867351
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxygen free radicals: effect on red cell deformability in sepsis.
    Powell RJ; Machiedo GW; Rush BF; Dikdan G
    Crit Care Med; 1991 May; 19(5):732-5. PubMed ID: 2026037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Red blood cell deformability in human and experimental sepsis.
    Hurd TC; Dasmahapatra KS; Rush BF; Machiedo GW
    Arch Surg; 1988 Feb; 123(2):217-20. PubMed ID: 3277585
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Remote ischemia preconditioning increases red blood cell deformability through red blood cell-nitric oxide synthase activation.
    Grau M; Kollikowski A; Bloch W
    Clin Hemorheol Microcirc; 2016 Sep; 63(3):185-97. PubMed ID: 26890111
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitric oxide influences red blood cell velocity independently of changes in the vascular tone.
    Horn P; Cortese-Krott MM; Keymel S; Kumara I; Burghoff S; Schrader J; Kelm M; Kleinbongard P
    Free Radic Res; 2011 Jun; 45(6):653-61. PubMed ID: 21480762
    [TBL] [Abstract][Full Text] [Related]  

  • 48. L-carnosine alters some hemorheologic and lipid peroxidation parameters in nephrectomized rats.
    Yapislar H; Taskin E
    Med Sci Monit; 2014 Mar; 20():399-405. PubMed ID: 24614724
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Red blood cell nitric oxide synthase modulates red blood cell deformability in sickle cell anemia.
    Mozar A; Connes P; Collins B; Hardy-Dessources MD; Romana M; Lemonne N; Bloch W; Grau M
    Clin Hemorheol Microcirc; 2016 Nov; 64(1):47-53. PubMed ID: 26890236
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A computational model for nitric oxide, nitrite and nitrate biotransport in the microcirculation: effect of reduced nitric oxide consumption by red blood cells and blood velocity.
    Deonikar P; Kavdia M
    Microvasc Res; 2010 Dec; 80(3):464-76. PubMed ID: 20888842
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis.
    Farquhar I; Martin CM; Lam C; Potter R; Ellis CG; Sibbald WJ
    J Surg Res; 1996 Feb; 61(1):190-6. PubMed ID: 8769965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of nitric oxide on capillary hemodynamics and cell injury in the pancreas during Pseudomonas pneumonia-induced sepsis.
    Tribl B; Bateman RM; Milkovich S; Sibbald WJ; Ellis CG
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H340-5. PubMed ID: 12969889
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Asymmetric dimethylarginine reduced erythrocyte deformability in streptozotocin-induced diabetic rats.
    Yang ZC; Xia K; Wang L; Jia SJ; Li D; Zhang Z; Deng S; Zhang XH; Deng HW; Li YJ
    Microvasc Res; 2007 Mar; 73(2):131-6. PubMed ID: 17098259
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitric oxide is a determinant of membrane fluidity of erythrocytes in postmenopausal women: an electron paramagnetic resonance investigation.
    Tsuda K; Kinoshita-Shimamoto Y; Kimura K; Nishio I
    Am J Hypertens; 2003 Mar; 16(3):244-8. PubMed ID: 12620706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Red blood cell dysfunction in septic glucose-6-phosphate dehydrogenase-deficient mice.
    Spolarics Z; Condon MR; Siddiqi M; Machiedo GW; Deitch EA
    Am J Physiol Heart Circ Physiol; 2004 Jun; 286(6):H2118-26. PubMed ID: 14751857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Red blood cell flow cessation and diameter reductions in skeletal muscle capillaries in vivo - the role of oxygen.
    Bosman J; Tangelder GJ; oude Egbrink MG; Reneman RS; Slaaf DW
    Pflugers Arch; 1995 Sep; 430(5):852-61. PubMed ID: 7478943
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulation of density-fractionated RBC deformability by nitric oxide.
    Bor-Kucukatay M; Meiselman HJ; Başkurt OK
    Clin Hemorheol Microcirc; 2005; 33(4):363-7. PubMed ID: 16317245
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of sepsis on skeletal muscle oxygen consumption and tissue oxygenation: interpreting capillary oxygen transport data using a mathematical model.
    Goldman D; Bateman RM; Ellis CG
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2535-44. PubMed ID: 15319199
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of prostacyclin and nitric oxide on deformability of red blood cells in septic shock in rats.
    Korbut R; Gryglewski RJ
    J Physiol Pharmacol; 1996 Dec; 47(4):591-9. PubMed ID: 9116326
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evidence for the role of reactive nitrogen species in polymicrobial sepsis-induced renal peritubular capillary dysfunction and tubular injury.
    Wu L; Gokden N; Mayeux PR
    J Am Soc Nephrol; 2007 Jun; 18(6):1807-15. PubMed ID: 17494883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.