These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11356785)

  • 1. Is the VO2 slow component dependent on progressive recruitment of fast-twitch fibers in trained runners?
    Borrani F; Candau R; Millet GY; Perrey S; Fuchslocher J; Rouillon JD
    J Appl Physiol (1985); 2001 Jun; 90(6):2212-20. PubMed ID: 11356785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the VO2 slow component in heavy arm-cranking exercise associated with recruitment of type II muscle fibers as assessed by an increase in surface EMG?
    Bernasconi S; Tordi N; Perrey S; Parratte B; Monnier G
    Appl Physiol Nutr Metab; 2006 Aug; 31(4):414-22. PubMed ID: 16900231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromyographic data do not support a progressive recruitment of muscle fibers during exercise exhibiting a VO2 slow component.
    Cannon DT; Kolkhorst FW; Cipriani DJ
    J Physiol Anthropol; 2007 Sep; 26(5):541-6. PubMed ID: 18092510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The slow component of O(2) uptake is not accompanied by changes in muscle EMG during repeated bouts of heavy exercise in humans.
    Scheuermann BW; Hoelting BD; Noble ML; Barstow TJ
    J Physiol; 2001 Feb; 531(Pt 1):245-56. PubMed ID: 11179407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.
    Barstow TJ; Jones AM; Nguyen PH; Casaburi R
    J Appl Physiol (1985); 1996 Oct; 81(4):1642-50. PubMed ID: 8904581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive recruitment of muscle fibers is not necessary for the slow component of VO2 kinetics.
    Zoladz JA; Gladden LB; Hogan MC; Nieckarz Z; Grassi B
    J Appl Physiol (1985); 2008 Aug; 105(2):575-80. PubMed ID: 18483168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle activation and the slow component rise in oxygen uptake during cycling.
    Saunders MJ; Evans EM; Arngrimsson SA; Allison JD; Warren GL; Cureton KJ
    Med Sci Sports Exerc; 2000 Dec; 32(12):2040-5. PubMed ID: 11128849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of muscle fibre type and fitness on the oxygen uptake/power output slope during incremental exercise in humans.
    Barstow TJ; Jones AM; Nguyen PH; Casaburi R
    Exp Physiol; 2000 Jan; 85(1):109-16. PubMed ID: 10662900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (.)VO(2) and EMG activity kinetics during moderate and severe constant work rate exercise in trained cyclists.
    Cleuziou C; Perrey S; Borrani F; Lecoq AM; Courteix D; Germain P; Obert P
    Can J Appl Physiol; 2004 Dec; 29(6):758-72. PubMed ID: 15630148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VO2 kinetics in the horse during moderate and heavy exercise.
    Langsetmo I; Weigle GE; Fedde MR; Erickson HH; Barstow TJ; Poole DC
    J Appl Physiol (1985); 1997 Oct; 83(4):1235-41. PubMed ID: 9338433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indices of electromyographic activity and the "slow" component of oxygen uptake kinetics during high-intensity knee-extension exercise in humans.
    Garland SW; Wang W; Ward SA
    Eur J Appl Physiol; 2006 Jul; 97(4):413-23. PubMed ID: 16685552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen uptake kinetics during severe exercise: a comparison between young and older men.
    Sabapathy S; Schneider DA; Comadira G; Johnston I; Morris NR
    Respir Physiol Neurobiol; 2004 Jan; 139(2):203-13. PubMed ID: 15123003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen uptake during high-intensity running: response following a single bout of interval training.
    James DV; Doust JH
    Eur J Appl Physiol Occup Physiol; 1999 Feb; 79(3):237-43. PubMed ID: 10048628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle glycogen reduction in man: relationship between surface EMG activity and oxygen uptake kinetics during heavy exercise.
    Osborne MA; Schneider DA
    Exp Physiol; 2006 Jan; 91(1):179-89. PubMed ID: 16272265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans.
    Zoladz JA; Duda K; Majerczak J
    Eur J Appl Physiol Occup Physiol; 1998 Apr; 77(5):445-51. PubMed ID: 9562296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between electromyography and work intensity revisited: a brief review with references to lacticacidosis and hyperammonia.
    Taylor AD; Bronks R; Bryant AL
    Electromyogr Clin Neurophysiol; 1997 Oct; 37(7):387-98. PubMed ID: 9402427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VO2 slow component correlates with vastus lateralis de-oxygenation and blood lactate accumulation during running.
    Demarie S; Quaresima V; Ferrari M; Sardella F; Billat V; Faina M
    J Sports Med Phys Fitness; 2001 Dec; 41(4):448-55. PubMed ID: 11687763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral analysis of erector spinae muscle surface electromyography as an index of exercise performance in maximal treadmill running.
    Nagamachi A; Ikata T; Katoh S; Morita T
    J Med Invest; 2000 Feb; 47(1-2):29-35. PubMed ID: 10740977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of oxygen uptake kinetics during concentric and eccentric cycle exercise.
    Perrey S; Betik A; Candau R; Rouillon JD; Hughson RL
    J Appl Physiol (1985); 2001 Nov; 91(5):2135-42. PubMed ID: 11641354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different pedal rates on oxygen uptake slow component during constant-load cycling exercise.
    Migita T; Hirakoba K
    J Sports Med Phys Fitness; 2006 Jun; 46(2):189-96. PubMed ID: 16823346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.