These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 11357515)
1. Effect of carotenoid deficiency on cells and chlorosomes of Chlorobium phaeobacteroides. Arellano JB; Borrego CM; Martínez-Planells A; Garcia-Gil LJ Arch Microbiol; 2001 Mar; 175(3):226-33. PubMed ID: 11357515 [TBL] [Abstract][Full Text] [Related]
2. Effect of carotenoid biosynthesis inhibition on the chlorosome organization in Chlorobium phaeobacteroides strain CL1401. Arellano JB; Psencik J; Borrego CM; Ma YZ; Guyoneaud R; Garcia-Gil J; Gillbro T Photochem Photobiol; 2000 Jun; 71(6):715-23. PubMed ID: 10857367 [TBL] [Abstract][Full Text] [Related]
3. Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401. Arellano JB; Melø TB; Borrego CM; Garcia-Gil J; Naqvi KR Photochem Photobiol; 2000 Nov; 72(5):669-75. PubMed ID: 11107853 [TBL] [Abstract][Full Text] [Related]
4. Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids. Psencík J; Ma YZ; Arellano JB; Garcia-Gil J; Holzwarth AR; Gillbro T Photosynth Res; 2002; 71(1-2):5-18. PubMed ID: 16228497 [TBL] [Abstract][Full Text] [Related]
5. X-ray scattering and electron cryomicroscopy study on the effect of carotenoid biosynthesis to the structure of Chlorobium tepidum chlorosomes. Ikonen TP; Li H; Psencík J; Laurinmäki PA; Butcher SJ; Frigaard NU; Serimaa RE; Bryant DA; Tuma R Biophys J; 2007 Jul; 93(2):620-8. PubMed ID: 17468163 [TBL] [Abstract][Full Text] [Related]
6. Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Bryant DA; Vassilieva EV; Frigaard NU; Li H Biochemistry; 2002 Dec; 41(48):14403-11. PubMed ID: 12450407 [TBL] [Abstract][Full Text] [Related]
7. Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. Frigaard NU; Voigt GD; Bryant DA J Bacteriol; 2002 Jun; 184(12):3368-76. PubMed ID: 12029054 [TBL] [Abstract][Full Text] [Related]
8. Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. Frigaard NU; Li H; Milks KJ; Bryant DA J Bacteriol; 2004 Feb; 186(3):646-53. PubMed ID: 14729689 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum. Frigaard NU; Li H; Martinsson P; Das SK; Frank HA; Aartsma TJ; Bryant DA Photosynth Res; 2005 Nov; 86(1-2):101-11. PubMed ID: 16172929 [TBL] [Abstract][Full Text] [Related]
11. Internal structure of chlorosomes from brown-colored chlorobium species and the role of carotenoids in their assembly. Psencík J; Arellano JB; Ikonen TP; Borrego CM; Laurinmäki PA; Butcher SJ; Serimaa RE; Tuma R Biophys J; 2006 Aug; 91(4):1433-40. PubMed ID: 16731553 [TBL] [Abstract][Full Text] [Related]
12. A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a. Pedersen MØ; Pham L; Steensgaard DB; Miller M Biochemistry; 2008 Feb; 47(5):1435-41. PubMed ID: 18177020 [TBL] [Abstract][Full Text] [Related]
13. Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. Sakuragi Y; Frigaard N; Shimada K; Matsuura K Biochim Biophys Acta; 1999 Nov; 1413(3):172-80. PubMed ID: 10556629 [TBL] [Abstract][Full Text] [Related]
14. A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Pedersen MØ; Linnanto J; Frigaard NU; Nielsen NC; Miller M Photosynth Res; 2010 Jun; 104(2-3):233-43. PubMed ID: 20077007 [TBL] [Abstract][Full Text] [Related]
15. The role of carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaeobacteroides. Hirabayashi H; Ishii T; Takaichi S; Inoue K; Uehara K Photochem Photobiol; 2004 Mar; 79(3):280-5. PubMed ID: 15115301 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the chlorosome antenna of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001. Gich F; Airs RL; Danielsen M; Keely BJ; Abella CA; Garcia-Gil J; Miller M; Borrego CM Arch Microbiol; 2003 Dec; 180(6):417-26. PubMed ID: 14610639 [TBL] [Abstract][Full Text] [Related]
17. Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. Vassilieva EV; Stirewalt VL; Jakobs CU; Frigaard NU; Inoue-Sakamoto K; Baker MA; Sotak A; Bryant DA Biochemistry; 2002 Apr; 41(13):4358-70. PubMed ID: 11914082 [TBL] [Abstract][Full Text] [Related]
18. Intensity borrowing via excitonic couplings among soret and Q(y) transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria. Shibata Y; Tateishi S; Nakabayashi S; Itoh S; Tamiaki H Biochemistry; 2010 Sep; 49(35):7504-15. PubMed ID: 20701269 [TBL] [Abstract][Full Text] [Related]
19. Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Staehelin LA; Golecki JR; Drews G Biochim Biophys Acta; 1980 Jan; 589(1):30-45. PubMed ID: 7356977 [TBL] [Abstract][Full Text] [Related]
20. Bacteriochlorophyll e monomers, but not aggregates, sensitize singlet oxygen: implications for a self-photoprotection mechanism in chlorosomes. Arellano JB; Melø TB; Borrego CM; Naqvi KR Photochem Photobiol; 2002 Oct; 76(4):373-80. PubMed ID: 12405142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]