These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11358258)

  • 1. Linear programming of inlet pressure or flow-rate in isothermal gas chromatography with near-vacuum outlet pressure.
    Nahir TM; Gerbec JA
    J Chromatogr A; 2001 Apr; 915(1-2):265-70. PubMed ID: 11358258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the plate height of capillary columns operated at any inlet pressure of the carrier gas by using few retention data measured under isobaric conditions.
    Vezzani S; Moretti P; Castello G
    J Chromatogr A; 2003 Apr; 994(1-2):103-25. PubMed ID: 12779223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonsteady-state flow in gas chromatography during fast changes in inlet pressure.
    Nahir TM
    J Chromatogr A; 2004 Mar; 1029(1-2):275-8. PubMed ID: 15032373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constant holdup times in gas chromatography by programming of column temperature and inlet pressure.
    Nahir TM; Morales KM
    Anal Chem; 2000 Oct; 72(19):4667-70. PubMed ID: 11028627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of theoretical plate number in isothermal gas chromatographic analysis on capillary columns.
    Moretti P; Vezzani S; Castello G
    J Chromatogr A; 2006 Nov; 1133(1-2):305-14. PubMed ID: 16959257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of performance of monolithic capillary column in gas chromatographic separations.
    Korolev A; Shyrjaeva V; Popova T; Kurganov A
    J Chromatogr A; 2011 May; 1218(21):3267-73. PubMed ID: 20870237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A portable, high-speed, vacuum-outlet GC vapor analyzer employing air as carrier gas and surface acoustic wave detection.
    Whiting JJ; Lu CJ; Zellers ET; Sacks RD
    Anal Chem; 2001 Oct; 73(19):4668-75. PubMed ID: 11605845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of retention times in linear gradient temperature and pressure programmed analysis on capillary columns.
    Vezzani S; Moretti P; Mazzi M; Castello G
    J Chromatogr A; 2004 Nov; 1055(1-2):151-8. PubMed ID: 15560491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the resolution of capillary columns in different conditions of inlet pressure and temperature.
    Vezzani S; Moretti P; Castello G; Travaini G
    J Chromatogr A; 2004 Feb; 1026(1-2):201-21. PubMed ID: 14763748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas chromatographic system for the identification of halogenated pesticides by retention indices using n-alkanes as standards.
    De Paoli M; Taccheo-Barbina M; Bontempelli G
    J Chromatogr; 1991 Jun; 547(1-2):355-65. PubMed ID: 1894723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-tunable column selectivity for high-speed vacuum-outlet GC.
    Grall AJ; Sacks RD
    Anal Chem; 2000 Jun; 72(11):2507-13. PubMed ID: 10857627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hold-up time in gas chromatography. V. Dependence of the retention of n-alkanes on the chromatographic variables in isothermal gas chromatography.
    Quintanilla-López JE; Lebrón-Aguilar R; García-Domínguez JA
    J Chromatogr A; 2000 May; 878(1):125-35. PubMed ID: 10843551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive two-dimensional gas chromatography under high outlet pressure conditions: a new approach to correct the flow-mismatch issue in the two dimensions.
    Peroni D; Janssen HG
    J Chromatogr A; 2014 Mar; 1332():57-63. PubMed ID: 24513348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient flow in response to a pressure pulse in gas chromatography.
    Nahir TM
    Anal Chem; 2003 Sep; 75(17):4462-6. PubMed ID: 14632050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed gas chromatography: an overview of various concepts.
    Cramers CA; Janssen HG; van Deursen MM; Leclercq PA
    J Chromatogr A; 1999 Sep; 856(1-2):315-29. PubMed ID: 10526794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast gas chromatography: packed column solvating gas chromatography versus open tubular column gas chromatography.
    Wu N; Medina JC; Lee ML
    J Chromatogr A; 2000 Sep; 892(1-2):3-13. PubMed ID: 11045476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed analysis of complex indoor VOC mixtures by vacuum-outlet GC with air carrier gas and programmable retention.
    Grall AJ; Zellers ET; Sacks RD
    Environ Sci Technol; 2001 Jan; 35(1):163-9. PubMed ID: 11352005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metrics of separation performance in chromatography: Part 2. Separation performance of a heating ramp in temperature-programmed gas chromatography.
    Blumberg LM
    J Chromatogr A; 2012 Jun; 1244():148-60. PubMed ID: 22621891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A calculation method for the prediction of effective plate height in capillary gas chromatography.
    Moretti P; Vezzani S; Castello G
    J Chromatogr A; 2009 Dec; 1216(51):8986-91. PubMed ID: 19909965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention models for programmed gas chromatography.
    Castello G; Moretti P; Vezzani S
    J Chromatogr A; 2009 Mar; 1216(10):1607-23. PubMed ID: 19081102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.