BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11358327)

  • 1. Delineating structure-function relationships in the dopamine transporter from natural and engineered Zn2+ binding sites.
    Gether U; Norregaard L; Loland CJ
    Life Sci; 2001 Apr; 68(19-20):2187-98. PubMed ID: 11358327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining proximity relationships in the tertiary structure of the dopamine transporter. Identification of a conserved glutamic acid as a third coordinate in the endogenous Zn(2+)-binding site.
    Loland CJ; Norregaard L; Gether U
    J Biol Chem; 1999 Dec; 274(52):36928-34. PubMed ID: 10601246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delineation of an endogenous zinc-binding site in the human dopamine transporter.
    Norregaard L; Frederiksen D; Nielsen EO; Gether U
    EMBO J; 1998 Aug; 17(15):4266-73. PubMed ID: 9687495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural probing of a microdomain in the dopamine transporter by engineering of artificial Zn2+ binding sites.
    Norregaard L; Visiers I; Loland CJ; Ballesteros J; Weinstein H; Gether U
    Biochemistry; 2000 Dec; 39(51):15836-46. PubMed ID: 11123909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing dopamine transporter structure and function by Zn2+-site engineering.
    Loland CJ; Norgaard-Nielsen K; Gether U
    Eur J Pharmacol; 2003 Oct; 479(1-3):187-97. PubMed ID: 14612149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of conserved tryptophan and acidic residues in the human dopamine transporter as characterized by site-directed mutagenesis.
    Chen N; Vaughan RA; Reith ME
    J Neurochem; 2001 May; 77(4):1116-27. PubMed ID: 11359877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn(2+) site engineering at the oligomeric interface of the dopamine transporter.
    Norgaard-Nielsen K; Norregaard L; Hastrup H; Javitch JA; Gether U
    FEBS Lett; 2002 Jul; 524(1-3):87-91. PubMed ID: 12135746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for distinct sodium-, dopamine-, and cocaine-dependent conformational changes in transmembrane segments 7 and 8 of the dopamine transporter.
    Norregaard L; Loland CJ; Gether U
    J Biol Chem; 2003 Aug; 278(33):30587-96. PubMed ID: 12773538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine transporter: transmembrane phenylalanine mutations can selectively influence dopamine uptake and cocaine analog recognition.
    Lin Z; Wang W; Kopajtic T; Revay RS; Uhl GR
    Mol Pharmacol; 1999 Aug; 56(2):434-47. PubMed ID: 10419565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine transporter proline mutations influence dopamine uptake, cocaine analog recognition, and expression.
    Lin Z; Itokawa M; Uhl GR
    FASEB J; 2000 Apr; 14(5):715-28. PubMed ID: 10744628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Zn(2+) switches in the gamma-aminobutyric acid (GABA) transporter-1. Differential effects on GABA uptake and currents.
    MacAulay N; Bendahan A; Loland CJ; Zeuthen T; Kanner BI; Gether U
    J Biol Chem; 2001 Nov; 276(44):40476-85. PubMed ID: 11527967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a recombinant human dopamine transporter in multiple cell lines.
    Eshleman AJ; Neve RL; Janowsky A; Neve KA
    J Pharmacol Exp Ther; 1995 Jul; 274(1):276-83. PubMed ID: 7616409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine transporter tryptophan mutants highlight candidate dopamine- and cocaine-selective domains.
    Lin Z; Wang W; Uhl GR
    Mol Pharmacol; 2000 Dec; 58(6):1581-92. PubMed ID: 11093799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate transport and cocaine binding of human dopamine transporter is reduced by substitution of carboxyl tail with that of bovine dopamine transporter.
    Lee SH; Cho HK; Son H; Lee YS
    Neuroreport; 1997 Jul; 8(11):2591-4. PubMed ID: 9261833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase-mediated bidirectional trafficking and functional regulation of the human dopamine transporter.
    Pristupa ZB; McConkey F; Liu F; Man HY; Lee FJ; Wang YT; Niznik HB
    Synapse; 1998 Sep; 30(1):79-87. PubMed ID: 9704884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binding sites for cocaine and dopamine in the dopamine transporter overlap.
    Beuming T; Kniazeff J; Bergmann ML; Shi L; Gracia L; Raniszewska K; Newman AH; Javitch JA; Weinstein H; Gether U; Loland CJ
    Nat Neurosci; 2008 Jul; 11(7):780-9. PubMed ID: 18568020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine transporter cysteine mutants: second extracellular loop cysteines are required for transporter expression.
    Wang JB; Moriwaki A; Uhl GR
    J Neurochem; 1995 Mar; 64(3):1416-9. PubMed ID: 7861176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding.
    Loland CJ; Grånäs C; Javitch JA; Gether U
    J Biol Chem; 2004 Jan; 279(5):3228-38. PubMed ID: 14597628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of the interaction of Na+ and K+ with the binding of dopamine and [3H]WIN 35,428 to the human dopamine transporter.
    Li LB; Reith ME
    J Neurochem; 1999 Mar; 72(3):1095-109. PubMed ID: 10037481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural domains of chimeric dopamine-noradrenaline human transporters involved in the Na(+)- and Cl(-)-dependence of dopamine transport.
    Syringas M; Janin F; Mezghanni S; Giros B; Costentin J; Bonnet JJ
    Mol Pharmacol; 2000 Dec; 58(6):1404-11. PubMed ID: 11093780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.