BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11358378)

  • 1. Erythrocyte membrane ATP binding cassette (ABC) proteins: MRP1 and CFTR as well as CD39 (ecto-apyrase) involved in RBC ATP transport and elevated blood plasma ATP of cystic fibrosis.
    Abraham EH; Sterling KM; Kim RJ; Salikhova AY; Huffman HB; Crockett MA; Johnston N; Parker HW; Boyle WE; Hartov A; Demidenko E; Efird J; Kahn J; Grubman SA; Jefferson DM; Robson SC; Thakar JH; Lorico A; Rappa G; Sartorelli AC; Okunieff P
    Blood Cells Mol Dis; 2001; 27(1):165-80. PubMed ID: 11358378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic fibrosis transmembrane conductance regulator in human and mouse red blood cell membranes and its interaction with ecto-apyrase.
    Sterling KM; Shah S; Kim RJ; Johnston NI; Salikhova AY; Abraham EH
    J Cell Biochem; 2004 Apr; 91(6):1174-82. PubMed ID: 15048872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodiffusional ATP movement through CFTR and other ABC transporters.
    Cantiello HF
    Pflugers Arch; 2001; 443 Suppl 1():S22-7. PubMed ID: 11845298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins.
    Ballatori N; Hammond CL; Cunningham JB; Krance SM; Marchan R
    Toxicol Appl Pharmacol; 2005 May; 204(3):238-55. PubMed ID: 15845416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RLIP76 is the major ATP-dependent transporter of glutathione-conjugates and doxorubicin in human erythrocytes.
    Sharma R; Singhal SS; Cheng J; Yang Y; Sharma A; Zimniak P; Awasthi S; Awasthi YC
    Arch Biochem Biophys; 2001 Jul; 391(2):171-9. PubMed ID: 11437348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological concept for a blood based CFTR test.
    Stumpf A; Wenners-Epping K; Wälte M; Lange T; Koch HG; Häberle J; Dübbers A; Falk S; Kiesel L; Nikova D; Bruns R; Bertram H; Oberleithner H; Schillers H
    Cell Physiol Biochem; 2006; 17(1-2):29-36. PubMed ID: 16543719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems.
    Aryal B; Laurent C; Geisler M
    Biochem Soc Trans; 2015 Oct; 43(5):966-74. PubMed ID: 26517911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial cells express multiple ATP binding cassette proteins which are involved in ATP release.
    Ballerini P; Di Iorio P; Ciccarelli R; Nargi E; D'Alimonte I; Traversa U; Rathbone MP; Caciagli F
    Neuroreport; 2002 Oct; 13(14):1789-92. PubMed ID: 12395124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide transport through the cystic fibrosis transmembrane conductance regulator.
    Cantiello HF
    Biosci Rep; 1997 Apr; 17(2):147-71. PubMed ID: 9217964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the adenosinetriphosphatase and transport activities of purified cystic fibrosis transmembrane conductance regulator.
    Ketchum CJ; Rajendrakumar GV; Maloney PC
    Biochemistry; 2004 Feb; 43(4):1045-53. PubMed ID: 14744150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion.
    Kalsi KK; González-Alonso J
    Exp Physiol; 2012 Mar; 97(3):419-32. PubMed ID: 22227202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CFTR, MDR1, and MRP1 immunolocalization in normal human nasal respiratory mucosa.
    Wioland MA; Fleury-Feith J; Corlieu P; Commo F; Monceaux G; Lacau-St-Guily J; Bernaudin JF
    J Histochem Cytochem; 2000 Sep; 48(9):1215-22. PubMed ID: 10950878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of Drosophila melanogaster P-glycoproteins is associated with ATP channel activity.
    Bosch I; Jackson GR; Croop JM; Cantiello HF
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1527-38. PubMed ID: 8944636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners.
    Li C; Naren AP
    Pharmacol Ther; 2005 Nov; 108(2):208-23. PubMed ID: 15936089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid movement across the surface epithelium of large airways.
    Chambers LA; Rollins BM; Tarran R
    Respir Physiol Neurobiol; 2007 Dec; 159(3):256-70. PubMed ID: 17692578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the ATP-binding-cassette transmembrane transporters of vertebrates.
    Hughes AL
    Mol Biol Evol; 1994 Nov; 11(6):899-910. PubMed ID: 7529351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cystic fibrosis transmembrane conductance regulator: the first nucleotide binding fold targets the membrane with retention of its ATP binding function.
    Ko YH; Delannoy M; Pedersen PL
    Biochemistry; 1997 Apr; 36(16):5053-64. PubMed ID: 9125527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular ATP release by the cystic fibrosis transmembrane conductance regulator.
    Prat AG; Reisin IL; Ausiello DA; Cantiello HF
    Am J Physiol; 1996 Feb; 270(2 Pt 1):C538-45. PubMed ID: 8779917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cystic fibrosis: recent structural insights.
    Dorwart M; Thibodeau P; Thomas P
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():91-4. PubMed ID: 15463935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions.
    Toyoda Y; Hagiya Y; Adachi T; Hoshijima K; Kuo MT; Ishikawa T
    Xenobiotica; 2008 Jul; 38(7-8):833-62. PubMed ID: 18668432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.