These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11358661)

  • 1. Continuous distribution analysis of marrow 1H magnetic resonance relaxation in bone.
    Fantazzini P; Garavaglia C; Guglielmi G
    Magn Reson Imaging; 2001 Feb; 19(2):227-31. PubMed ID: 11358661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From porous media to trabecular bone relaxation analysis: spatial variation of marrow 1H relaxation time distributions detected in vitro by quasi-continuous distribution analysis.
    Fantazzini P; Garavaglia C; Guglielmi G
    Magn Reson Imaging; 2001; 19(3-4):477-80. PubMed ID: 11445334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone tissue and porous media: common features and differences studied by NMR relaxation.
    Fantazzini P; Brown RJ; Borgia GC
    Magn Reson Imaging; 2003; 21(3-4):227-34. PubMed ID: 12850712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of 1H-NMR relaxation time distributions in L1 to L6 rat lumbar vertebrae.
    Fantazzini P; Garavaglia C; Palombarini M; Brown RJ; Giavaresi G; Giardino R
    Magn Reson Imaging; 2004 Jun; 22(5):689-95. PubMed ID: 15172063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitation of the susceptibility difference between trabecular bone and bone marrow: experimental studies.
    Majumdar S; Thomasson D; Shimakawa A; Genant HK
    Magn Reson Med; 1991 Nov; 22(1):111-27. PubMed ID: 1798386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributions of transverse relaxation times for soft-solids measured in strongly inhomogeneous magnetic fields.
    Chelcea RI; Fechete R; Culea E; Demco DE; Blümich B
    J Magn Reson; 2009 Feb; 196(2):178-90. PubMed ID: 19083248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of R'2 in the presence of multiple spectral components using reference spectrum deconvolution.
    Wehrli FW; Ma J; Hopkins JA; Song HK
    J Magn Reson; 1998 Mar; 131(1):61-8. PubMed ID: 9533907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of collagen-bound and porous bone-water longitudinal relaxation in mice using a segmented inversion recovery zero-echo-time sequence.
    Marcon M; Keller D; Wurnig MC; Weiger M; Kenkel D; Eberhardt C; Eberli D; Boss A
    Magn Reson Med; 2017 May; 77(5):1909-1915. PubMed ID: 27221236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton magnetic relaxation in bone marrow related to age and bone mineral density: low-resolution in vitro studies.
    Lendinara L; Accorsi C; Agostini C; Angelini G; Baruffaldi F; Fini M; Motta M; Giavaresi G
    Magn Reson Imaging; 2001 Jun; 19(5):745-53. PubMed ID: 11672634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of trabecular structure in the distal femur using magnetic resonance phase imaging.
    De Bisschop E; Luypaert R; Allein S; Osteaux M
    Magn Reson Imaging; 1996; 14(1):11-20. PubMed ID: 8656983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1H NMR relaxation measurements of human tissues in situ by spatially resolved spectroscopy.
    Luyten PR; Anderson CM; den Hollander JA
    Magn Reson Med; 1987 May; 4(5):431-40. PubMed ID: 3600250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model.
    Schurr JM; Fujimoto BS; Diaz R; Robinson BH
    J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging of trabecular and cortical bone in mice: comparison of high resolution in vivo and ex vivo MR images with corresponding histology.
    Weber MH; Sharp JC; Latta P; Sramek M; Hassard HT; Orr FW
    Eur J Radiol; 2005 Jan; 53(1):96-102. PubMed ID: 15607859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow segmentation based on a combined consideration of transverse relaxation processes and Dixon oscillations.
    Balasubramanian M; Jarrett DY; Mulkern RV
    NMR Biomed; 2016 May; 29(5):553-62. PubMed ID: 26866627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined MR-relaxation and MR-cryoporometry in the study of bone microstructure.
    Fantazzini P; Viola R; Alnaimi SM; Strange JH
    Magn Reson Imaging; 2001; 19(3-4):481-4. PubMed ID: 11445335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo lipid diffusion coefficient measurements in rat bone marrow.
    Ababneh ZQ; Beloeil H; Berde CB; Ababneh AM; Maier SE; Mulkern RV
    Magn Reson Imaging; 2009 Jul; 27(6):859-64. PubMed ID: 19167181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results.
    de Bazelaire CM; Duhamel GD; Rofsky NM; Alsop DC
    Radiology; 2004 Mar; 230(3):652-9. PubMed ID: 14990831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of bound and pore water T
    Chen J; Chang EY; Carl M; Ma Y; Shao H; Chen B; Wu Z; Du J
    Magn Reson Med; 2017 Jun; 77(6):2136-2145. PubMed ID: 27263994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of trabecular bone on marrow relaxation in the tibia.
    Fransson A; Grampp S; Imhof H
    Magn Reson Imaging; 1999 Jan; 17(1):69-82. PubMed ID: 9888400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI measurement of bone marrow cellularity for radiation dosimetry.
    Pichardo JC; Milner RJ; Bolch WE
    J Nucl Med; 2011 Sep; 52(9):1482-9. PubMed ID: 21799087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.