These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 1135886)

  • 1. Dose distributions and mean doses in cylindrical cavities of bone marrow on X-ray irradiation.
    Sundararaman V; Prasad MA
    Strahlentherapie; 1975 Feb; 149(2):176-80. PubMed ID: 1135886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myelotoxicity and RBE of 211At-conjugated monoclonal antibodies compared with 99mTc-conjugated monoclonal antibodies and 60Co irradiation in nude mice.
    Elgqvist J; Bernhardt P; Hultborn R; Jensen H; Karlsson B; Lindegren S; Warnhammar E; Jacobsson L
    J Nucl Med; 2005 Mar; 46(3):464-71. PubMed ID: 15750160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of x-ray spectrum transformation on bone marrow dose].
    Nikitin VV; Masarskiĭ LI; Shtoĭer I; Nessler I
    Med Radiol (Mosk); 1985 Nov; 30(11):58-63. PubMed ID: 4068948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of radiation dose at a bone-to-marrow interface using Monte Carlo modeling techniques (EGS4).
    Johnson JC; Langhorst SM; Loyalka SK; Volkert WA; Ketring AR
    J Nucl Med; 1992 Apr; 33(4):623-8. PubMed ID: 1552352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose distributions of X-rays in water: measurement with TL-dosimeters and comparison with Monte-Carlo calculations.
    Servomaa A; Tapiovaara M
    Eur J Radiol; 1984 Aug; 4(3):232-5. PubMed ID: 6468421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marrow toxicity of 33P-versus 32P-orthophosphate: implications for therapy of bone pain and bone metastases.
    Goddu SM; Bishayee A; Bouchet LG; Bolch WE; Rao DV; Howell RW
    J Nucl Med; 2000 May; 41(5):941-51. PubMed ID: 10809212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo calculations of the dose distribution around a commercial gynecologic tandem applicator.
    Gifford KA; Mourtada F; Cho SH; Lawyer A; Horton JL
    Radiother Oncol; 2005 Nov; 77(2):210-5. PubMed ID: 16216363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo calculation of the dose distributions across a plane bone-marrow interface during diagnostic X-ray examinations.
    Kulkarni RN
    Br J Radiol; 1981 Oct; 54(646):875-7. PubMed ID: 7296219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of cellular irradiation techniques with alpha particles using the Geant4 Monte Carlo simulation toolkit.
    Incerti S; Gault N; Habchi C; Lefaix JL; Moretto P; Poncy JL; Pouthier T; Seznec H
    Radiat Prot Dosimetry; 2006; 122(1-4):327-9. PubMed ID: 17132663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of the radiation dose at a bone-to-marrow interface.
    van Dieren EB; Plaizier MA; Roos JC; Teule GJ; van Lingen A
    J Nucl Med; 1992 Oct; 33(10):1915-6. PubMed ID: 1403167
    [No Abstract]   [Full Text] [Related]  

  • 11. Monte Carlo estimation of radiation doses in red bone marrow and breast in common pediatric x-ray examinations.
    Gialousis GI; Yakoumakis EN; Dimitriadis AI; Papouli ZK; Yakoumakis NE; Tsalafoutas IA; Papadopoulou DI; Georgiou EK
    Health Phys; 2008 Sep; 95(3):331-6. PubMed ID: 18695414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the red marrow dosimetry in radioimmunotherapy: an experimental investigation of factors influencing the radiation-induced myelotoxicity in therapy with beta-, Auger/conversion electron-, or alpha-emitters.
    Behr TM; Sgouros G; Stabin MG; Béhé M; Angerstein C; Blumenthal RD; Apostolidis C; Molinet R; Sharkey RM; Koch L; Goldenberg DM; Becker W
    Clin Cancer Res; 1999 Oct; 5(10 Suppl):3031s-3043s. PubMed ID: 10541340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms.
    DeMarco JJ; Cagnon CH; Cody DD; Stevens DM; McCollough CH; O'Daniel J; McNitt-Gray MF
    Phys Med Biol; 2005 Sep; 50(17):3989-4004. PubMed ID: 16177525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Bone marrow tissue doses in various types of radiation exposure].
    Korolev VI; Murashov BV; Feĭgin LG
    Med Radiol (Mosk); 1991; 36(9):6-8. PubMed ID: 1943591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of tissue inhomogeneity on dose distribution of continuous activity of low-energy electrons in bone marrow cavities with different topologies.
    Kwok CS; Bialobzyski PJ; Yu SK
    Med Phys; 1991; 18(3):533-41. PubMed ID: 1870497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling energy deposition in trabecular spongiosa using the Monte Carlo code PENELOPE.
    Gersh JA; Dingfelder M; Toburen LH
    Health Phys; 2007 Jul; 93(1):47-59. PubMed ID: 17563492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional transport model for determining absorbed fractions of energy for electrons within trabecular bone.
    Bouchet LG; Jokisch DW; Bolch WE
    J Nucl Med; 1999 Nov; 40(11):1947-66. PubMed ID: 10565793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Measured and calculated doses of transmitted and reflected radiation in the radiation energy range of x-ray diagnostic equipment].
    Gurzhiev AN; Gurzhiev SN; Korablev VM; Kostritskiĭ AV
    Med Tekh; 2008; (5):19-22. PubMed ID: 19051419
    [No Abstract]   [Full Text] [Related]  

  • 19. [A method for estimation of active bone marrow dose from x-ray radiography (author's transl)].
    Takaku Y
    Nihon Igaku Hoshasen Gakkai Zasshi; 1975 Aug; 35(8):685-91. PubMed ID: 1061944
    [No Abstract]   [Full Text] [Related]  

  • 20. Considerations of marrow cellularity in 3-dimensional dosimetric models of the trabecular skeleton.
    Bolch WE; Patton PW; Rajon DA; Shah AP; Jokisch DW; Inglis BA
    J Nucl Med; 2002 Jan; 43(1):97-108. PubMed ID: 11801712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.