BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11359310)

  • 1. Influence of surface roughness of barrier walls on guided bone augmentation: experimental study in rabbits.
    Lundgren AK; Lundgren D; Wennerberg A; Hämmerle CH; Nyman S
    Clin Implant Dent Relat Res; 1999; 1(1):41-8. PubMed ID: 11359310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of cortical perforations of contiguous donor bone in a guided bone augmentation procedure: an experimental study in the rabbit skull.
    Slotte C; Lundgren D
    Clin Implant Dent Relat Res; 2002; 4(1):1-10. PubMed ID: 11938632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of decortication of the donor bone on guided bone augmentation. An experimental study in the rabbit skull bone.
    Lundgren AK; Lundgren D; Hämmerle CH; Nyman S; Sennerby L
    Clin Oral Implants Res; 2000 Apr; 11(2):99-106. PubMed ID: 11168200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Placement of autogeneic bone chips or bovine bone mineral in guided bone augmentation: a rabbit skull study.
    Slotte C; Lundgren D; Burgos PM
    Int J Oral Maxillofac Implants; 2003; 18(6):795-806. PubMed ID: 14696654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of occlusiveness of a titanium cap on bone generation beyond the skeletal envelope in the rabbit calvarium.
    Yamada Y; Nanba K; Ito K
    Clin Oral Implants Res; 2003 Aug; 14(4):455-63. PubMed ID: 12869008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of implant surface topography on bone-regenerative potential and mechanical retention in the human maxilla and mandible.
    Wei N; Bin S; Jing Z; Wei S; Yingqiong Z
    Am J Dent; 2014 Jun; 27(3):171-6. PubMed ID: 25208367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model.
    Feighan JE; Goldberg VM; Davy D; Parr JA; Stevenson S
    J Bone Joint Surg Am; 1995 Sep; 77(9):1380-95. PubMed ID: 7673290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits.
    Gotfredsen K; Berglundh T; Lindhe J
    Clin Implant Dent Relat Res; 2000; 2(3):120-8. PubMed ID: 11359256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biology of grit-blasted titanium alloy implants.
    Goldberg VM; Stevenson S; Feighan J; Davy D
    Clin Orthop Relat Res; 1995 Oct; (319):122-9. PubMed ID: 7554621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae.
    Park YS; Yi KY; Lee IS; Han CH; Jung YC
    Int J Oral Maxillofac Implants; 2005; 20(1):31-8. PubMed ID: 15747671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography.
    Wennerberg A; Albrektsson T; Johansson C; Andersson B
    Biomaterials; 1996 Jan; 17(1):15-22. PubMed ID: 8962942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone augmentation at titanium implants using autologous bone grafts and a bioresorbable barrier. An experimental study in the rabbit tibia.
    Lundgren AK; Sennerby L; Lundgren D; Taylor A; Gottlow J; Nyman S
    Clin Oral Implants Res; 1997 Apr; 8(2):82-9. PubMed ID: 9758958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone.
    Sul YT; Kang BS; Johansson C; Um HS; Park CJ; Albrektsson T
    J Biomed Mater Res A; 2009 Jun; 89(4):942-50. PubMed ID: 18470920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological and dimensional changes after barrier removal in bone formed beyond the skeletal borders at titanium implants. A kinetic study in the rabbit tibia.
    Rasmusson L; Sennerby L; Lundgren D; Nyman S
    Clin Oral Implants Res; 1997 Apr; 8(2):103-16. PubMed ID: 9758961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblastic cell behaviour on modified titanium surfaces.
    Lukaszewska-Kuska M; Wirstlein P; Majchrowski R; Dorocka-Bobkowska B
    Micron; 2018 Feb; 105():55-63. PubMed ID: 29179009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmentation of intramembraneous bone beyond the skeletal envelope using an occlusive titanium barrier. An experimental study in the rabbit.
    Lundgren D; Lundgren AK; Sennerby L; Nyman S
    Clin Oral Implants Res; 1995 Jun; 6(2):67-72. PubMed ID: 7578783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osseointegration around titanium screws placed into the areas between guided bone augmented sites compared with osseointegration around guided bone graft augmented sites in rabbit tibia.
    Ito K; Nanba K; Nishida T; Fujikawa K; Murai S
    J Oral Sci; 1999 Jun; 41(2):87-92. PubMed ID: 10453133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osseointegration of commercial microstructured titanium implants incorporating magnesium: a histomorphometric study in rabbit cancellous bone.
    Park JW; An CH; Jeong SH; Suh JY
    Clin Oral Implants Res; 2012 Mar; 23(3):294-300. PubMed ID: 21435010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the permeability of shields with autologous bone grafts on bone augmentation.
    Ikeno M; Hibi H; Kinoshita K; Hattori H; Ueda M
    Int J Oral Maxillofac Implants; 2013; 28(6):e386-92. PubMed ID: 24278940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia.
    Cordioli G; Majzoub Z; Piattelli A; Scarano A
    Int J Oral Maxillofac Implants; 2000; 15(5):668-74. PubMed ID: 11055134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.