BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11359366)

  • 1. Mitochondrial polypeptides of the oxidative phosphorylation pathway as potential new targets for anti-cancer therapy.
    Tarantul VZ; Hunsmann G
    Med Hypotheses; 2001 Mar; 56(3):386-7. PubMed ID: 11359366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oxidative phosphorylation (OXPHOS) system: nuclear genes and human genetic diseases.
    van den Heuvel L; Smeitink J
    Bioessays; 2001 Jun; 23(6):518-25. PubMed ID: 11385631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of expression levels of the oxidative phosphorylation system (OXPHOS) in breast cancer cell mitochondria.
    Putignani L; Raffa S; Pescosolido R; Aimati L; Signore F; Torrisi MR; Grammatico P
    Breast Cancer Res Treat; 2008 Aug; 110(3):439-52. PubMed ID: 17899367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of cytochrome c oxidase by adenylic nucleotides. Is oxidative phosphorylation feedback regulated by its end-products?
    Beauvoit B; Rigoulet M
    IUBMB Life; 2001; 52(3-5):143-52. PubMed ID: 11798026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury.
    Dai W; Cheng HL; Huang RQ; Zhuang Z; Shi JX
    Brain Res; 2009 Jan; 1251():287-95. PubMed ID: 19063873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders.
    Ben-Shachar D; Zuk R; Gazawi H; Ljubuncic P
    Biochem Pharmacol; 2004 May; 67(10):1965-74. PubMed ID: 15130772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio).
    Cambier S; Bénard G; Mesmer-Dudons N; Gonzalez P; Rossignol R; Brèthes D; Bourdineaud JP
    Int J Biochem Cell Biol; 2009 Apr; 41(4):791-9. PubMed ID: 18765295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential gene expression during apoptosis induced by a serum factor: role of mitochondrial F0-F1 ATP synthase complex.
    Singh S; Khar A
    Apoptosis; 2005 Dec; 10(6):1469-82. PubMed ID: 16215688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OXPHOS Supercomplexes: respiration and life-span control in the aging model Podospora anserina.
    Krause F; Scheckhuber CQ; Werner A; Rexroth S; Reifschneider NH; Dencher NA; Osiewacz HD
    Ann N Y Acad Sci; 2006 May; 1067():106-15. PubMed ID: 16803975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of oxidative phosphorylation genes in patients with Alzheimer's disease: implications for early mitochondrial dysfunction and oxidative damage.
    Manczak M; Park BS; Jung Y; Reddy PH
    Neuromolecular Med; 2004; 5(2):147-62. PubMed ID: 15075441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased transcription of mitochondrial genes for Complex I in human platelets during ageing.
    Merlo Pich M; Raule N; Catani L; Fagioli ME; Faenza I; Cocco L; Lenaz G
    FEBS Lett; 2004 Jan; 558(1-3):19-22. PubMed ID: 14759509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays.
    Nadanaciva S; Bernal A; Aggeler R; Capaldi R; Will Y
    Toxicol In Vitro; 2007 Aug; 21(5):902-11. PubMed ID: 17346924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation.
    Peixoto F
    Chemosphere; 2005 Dec; 61(8):1115-22. PubMed ID: 16263381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic control of oxidative phosphorylation and experimental models of defects.
    Trounce I
    Hum Reprod; 2000 Jul; 15 Suppl 2():18-27. PubMed ID: 11041510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue.
    Maurer IC; Schippel P; Volz HP
    Bipolar Disord; 2009 Aug; 11(5):515-22. PubMed ID: 19624390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased hippocampal metabolic activity in Alzheimer patients is not reflected in the immunoreactivity of cytochrome oxidase subunits.
    Verwer RW; Jansen KA; Sluiter AA; Pool CW; Kamphorst W; Swaab DF
    Exp Neurol; 2000 Jun; 163(2):440-51. PubMed ID: 10833319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered expression of the adenine nucleotide translocase isoforms and decreased ATP synthase activity in skeletal muscle mitochondria in heart failure.
    Rosca MG; Okere IA; Sharma N; Stanley WC; Recchia FA; Hoppel CL
    J Mol Cell Cardiol; 2009 Jun; 46(6):927-35. PubMed ID: 19233197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial differentiation and oxidative phosphorylation system capacity in rat embryo during placentation period.
    Alcolea MP; Colom B; Lladó I; García-Palmer FJ; Gianotti M
    Reproduction; 2007 Jul; 134(1):147-54. PubMed ID: 17641096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of OXPHOS efficiency by complex I in brain mitochondria.
    Cocco T; Pacelli C; Sgobbo P; Villani G
    Neurobiol Aging; 2009 Apr; 30(4):622-9. PubMed ID: 17875347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome and cytoskeleton responses in osteosarcoma cells with reduced OXPHOS activity.
    Annunen-Rasila J; Ohlmeier S; Tuokko H; Veijola J; Majamaa K
    Proteomics; 2007 Jun; 7(13):2189-200. PubMed ID: 17533645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.