These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11359366)

  • 21. Knockdown of human Oxa1l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase.
    Stiburek L; Fornuskova D; Wenchich L; Pejznochova M; Hansikova H; Zeman J
    J Mol Biol; 2007 Nov; 374(2):506-16. PubMed ID: 17936786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of human male germ cell death by modulators of ATP production.
    Erkkila K; Kyttanen S; Wikstrom M; Taari K; Hikim AP; Swerdloff RS; Dunkel L
    Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1145-54. PubMed ID: 16403780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Respiratory active mitochondrial supercomplexes.
    Acín-Pérez R; Fernández-Silva P; Peleato ML; Pérez-Martos A; Enriquez JA
    Mol Cell; 2008 Nov; 32(4):529-39. PubMed ID: 19026783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The A3243G tRNALeu(UUR) mutation induces mitochondrial dysfunction and variable disease expression without dominant negative acting translational defects in complex IV subunits at UUR codons.
    Janssen GM; Hensbergen PJ; van Bussel FJ; Balog CI; Maassen JA; Deelder AM; Raap AK
    Hum Mol Genet; 2007 Oct; 16(20):2472-81. PubMed ID: 17656376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The regulation of OXPHOS by extramitochondrial calcium.
    Gellerich FN; Gizatullina Z; Trumbeckaite S; Nguyen HP; Pallas T; Arandarcikaite O; Vielhaber S; Seppet E; Striggow F
    Biochim Biophys Acta; 2010; 1797(6-7):1018-27. PubMed ID: 20144582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of enhancing mitochondrial oxidative phosphorylation with reducing equivalents and ubiquinone on 1-methyl-4-phenylpyridinium toxicity and complex I-IV damage in neuroblastoma cells.
    Mazzio EA; Soliman KF
    Biochem Pharmacol; 2004 Mar; 67(6):1167-84. PubMed ID: 15006552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast adaptive coevolution of nuclear and mitochondrial subunits of ATP synthetase in orangutan.
    Bayona-Bafaluy MP; Müller S; Moraes CT
    Mol Biol Evol; 2005 Mar; 22(3):716-24. PubMed ID: 15574809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergetics.
    Peixoto F; Vicente JA; Madeira VM
    J Biochem Mol Toxicol; 2003; 17(3):185-92. PubMed ID: 12815615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel electrophoresis.
    Devreese B; Vanrobaeys F; Smet J; Van Beeumen J; Van Coster R
    Electrophoresis; 2002 Aug; 23(15):2525-33. PubMed ID: 12210211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondria and tumors: a new perspective.
    Chintha R; Kaipa PR; Sekhar N; Hasan Q
    Indian J Cancer; 2013; 50(3):206-13. PubMed ID: 24061460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of nuclearly encoded mitochondrial genes in Metazoa.
    De Grassi A; Caggese C; D'Elia D; Lanave C; Pesole G; Saccone C
    Gene; 2005 Jul; 354():181-8. PubMed ID: 15975737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear and mitochondrial genome responses in HeLa cells treated with inhibitors of mitochondrial DNA expression.
    Piechota J; Szczesny R; Wolanin K; Chlebowski A; Bartnik E
    Acta Biochim Pol; 2006; 53(3):485-95. PubMed ID: 16951738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes.
    Dudkina NV; Sunderhaus S; Boekema EJ; Braun HP
    J Bioenerg Biomembr; 2008 Oct; 40(5):419-24. PubMed ID: 18839290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for an alternative and non-phosphorylating pathway for NADH reoxidation in a yeast strain resistant to glucose repression.
    Camougrand NM; Caubet RB; Guerin MG
    Eur J Biochem; 1983 Sep; 135(2):367-71. PubMed ID: 6309524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slipping pumps or proton leaks in oxidative phosphorylation. The local anesthetic bupivacaine causes slip in cytochrome c oxidase of mitochondria.
    van Dam K; Shinohara Y; Unami A; Yoshida K; Terada H
    FEBS Lett; 1990 Dec; 277(1-2):131-3. PubMed ID: 2176610
    [No Abstract]   [Full Text] [Related]  

  • 36. The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments.
    Tomitsuka E; Kita K; Esumi H
    Ann N Y Acad Sci; 2010 Jul; 1201():44-9. PubMed ID: 20649538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondria are targets of photodynamic therapy.
    Hilf R
    J Bioenerg Biomembr; 2007 Feb; 39(1):85-9. PubMed ID: 17334915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preliminary evidences on mitochondrial injury and impaired oxidative metabolism in breast cancer.
    Putignani L; Raffa S; Pescosolido R; Rizza T; Del Chierico F; Leone L; Aimati L; Signore F; Carrozzo R; Callea F; Torrisi MR; Grammatico P
    Mitochondrion; 2012 May; 12(3):363-9. PubMed ID: 22366096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Introduction to mitochondrial oxidative phosphorylation.
    Kadenbach B
    Adv Exp Med Biol; 2012; 748():1-11. PubMed ID: 22729852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and function of mitochondria: their organization and disorders.
    Ozawa T; Tanaka M; Suzuki H; Nishikimi M
    Brain Dev; 1987; 9(2):76-81. PubMed ID: 2888415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.