These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11359574)

  • 1. Heparin-binding outer membrane protein of chlamydiae.
    Stephens RS; Koshiyama K; Lewis E; Kubo A
    Mol Microbiol; 2001 May; 40(3):691-9. PubMed ID: 11359574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding.
    Moelleken K; Hegemann JH
    Mol Microbiol; 2008 Jan; 67(2):403-19. PubMed ID: 18086188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and antigenicity of chlamydial proteins that bind eukaryotic cell membrane proteins.
    Baghian A; Schnorr KL
    Am J Vet Res; 1992 Jun; 53(6):980-6. PubMed ID: 1378251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence analysis and lipid modification of the cysteine-rich envelope proteins of Chlamydia psittaci 6BC.
    Everett KD; Hatch TP
    J Bacteriol; 1991 Jun; 173(12):3821-30. PubMed ID: 2050637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human CD8+ T cells recognize the 60-kDa cysteine-rich outer membrane protein from Chlamydia trachomatis.
    Gervassi AL; Grabstein KH; Probst P; Hess B; Alderson MR; Fling SP
    J Immunol; 2004 Dec; 173(11):6905-13. PubMed ID: 15557186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the interaction between the chlamydial adhesin OmcB and the human host cell.
    Fechtner T; Stallmann S; Moelleken K; Meyer KL; Hegemann JH
    J Bacteriol; 2013 Dec; 195(23):5323-33. PubMed ID: 24056107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis.
    Hatch TP; Miceli M; Sublett JE
    J Bacteriol; 1986 Feb; 165(2):379-85. PubMed ID: 3944054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis.
    Hatch TP; Miceli M; Silverman JA
    J Bacteriol; 1985 Jun; 162(3):938-42. PubMed ID: 3997784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antigenic topology of chlamydial PorB protein and identification of targets for immune neutralization of infectivity.
    Kawa DE; Stephens RS
    J Immunol; 2002 May; 168(10):5184-91. PubMed ID: 11994474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol.
    Brown WJ; Skeiky YA; Probst P; Rockey DD
    Infect Immun; 2002 Oct; 70(10):5860-4. PubMed ID: 12228318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia trachomatis outer membrane complex protein B (OmcB) is processed by the protease CPAF.
    Hou S; Lei L; Yang Z; Qi M; Liu Q; Zhong G
    J Bacteriol; 2013 Mar; 195(5):951-7. PubMed ID: 23222729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential glycosaminoglycan binding of Chlamydia trachomatis OmcB protein from serovars E and LGV.
    Fadel S; Eley A
    J Med Microbiol; 2008 Sep; 57(Pt 9):1058-1061. PubMed ID: 18719173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia trachomatis OmcB protein is a surface-exposed glycosaminoglycan-dependent adhesin.
    Fadel S; Eley A
    J Med Microbiol; 2007 Jan; 56(Pt 1):15-22. PubMed ID: 17172511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the envelope proteins of Chlamydia pneumoniae, Chlamydia trachomatis, and Chlamydia psittaci shown by two-dimensional gel electrophoresis.
    Moroni A; Pavan G; Donati M; Cevenini R
    Arch Microbiol; 1996 Mar; 165(3):164-8. PubMed ID: 8599533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Chlamydia trachomatis outer membrane complex proteins by differential proteomics.
    Liu X; Afrane M; Clemmer DE; Zhong G; Nelson DE
    J Bacteriol; 2010 Jun; 192(11):2852-60. PubMed ID: 20348250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia pneumoniae effector chlamydial outer protein N sequesters fructose bisphosphate aldolase A, providing a benefit to bacterial growth.
    Ishida K; Matsuo J; Yamamoto Y; Yamaguchi H
    BMC Microbiol; 2014 Dec; 14():330. PubMed ID: 25528659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural requirements of heparin binding to Chlamydia trachomatis.
    Chen JC; Zhang JP; Stephens RS
    J Biol Chem; 1996 May; 271(19):11134-40. PubMed ID: 8626658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive in silico prediction and analysis of chlamydial outer membrane proteins reflects evolution and life style of the Chlamydiae.
    Heinz E; Tischler P; Rattei T; Myers G; Wagner M; Horn M
    BMC Genomics; 2009 Dec; 10():634. PubMed ID: 20040079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disulfide-linked oligomers of the major outer membrane protein of chlamydiae.
    Newhall WJ; Jones RB
    J Bacteriol; 1983 May; 154(2):998-1001. PubMed ID: 6841322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of C. trachomatis attachment to eukaryotic host cells.
    Zhang JP; Stephens RS
    Cell; 1992 May; 69(5):861-9. PubMed ID: 1591780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.