These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 11359576)
1. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Rahim R; Ochsner UA; Olvera C; Graninger M; Messner P; Lam JS; Soberón-Chávez G Mol Microbiol; 2001 May; 40(3):708-18. PubMed ID: 11359576 [TBL] [Abstract][Full Text] [Related]
2. The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-L-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor σS. Aguirre-Ramírez M; Medina G; González-Valdez A; Grosso-Becerra V; Soberón-Chávez G Microbiology (Reading); 2012 Apr; 158(Pt 4):908-916. PubMed ID: 22262098 [TBL] [Abstract][Full Text] [Related]
3. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. Ochsner UA; Fiechter A; Reiser J J Biol Chem; 1994 Aug; 269(31):19787-95. PubMed ID: 8051059 [TBL] [Abstract][Full Text] [Related]
4. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. Pearson JP; Pesci EC; Iglewski BH J Bacteriol; 1997 Sep; 179(18):5756-67. PubMed ID: 9294432 [TBL] [Abstract][Full Text] [Related]
5. Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant. Wild M; Caro AD; Hernández AL; Miller RM; Soberón-Chávez G FEMS Microbiol Lett; 1997 Aug; 153(2):279-85. PubMed ID: 9271853 [TBL] [Abstract][Full Text] [Related]
6. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798 [TBL] [Abstract][Full Text] [Related]
7. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Ochsner UA; Reiser J Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6424-8. PubMed ID: 7604006 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of di-rhamnolipids by the avirulent, mono-rhamnolipid producing strain Pseudomonas aeruginosa ATCC 9027. González-Valdez A; Vázquez-Bueno PG; Hernández-Pineda J; Soberón-Chávez G Biotechnol Lett; 2024 Dec; 46(6):1163-1170. PubMed ID: 39225887 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Ochsner UA; Koch AK; Fiechter A; Reiser J J Bacteriol; 1994 Apr; 176(7):2044-54. PubMed ID: 8144472 [TBL] [Abstract][Full Text] [Related]
10. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry. Zhao F; Yuan M; Lei L; Li C; Xu X Bioresour Technol; 2021 Mar; 323():124605. PubMed ID: 33388600 [TBL] [Abstract][Full Text] [Related]
11. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Grosso-Becerra MV; González-Valdez A; Granados-Martínez MJ; Morales E; Servín-González L; Méndez JL; Delgado G; Morales-Espinosa R; Ponce-Soto GY; Cocotl-Yañez M; Soberón-Chávez G Appl Microbiol Biotechnol; 2016 Dec; 100(23):9995-10004. PubMed ID: 27566690 [TBL] [Abstract][Full Text] [Related]
12. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Déziel E; Lépine F; Milot S; Villemur R Microbiology (Reading); 2003 Aug; 149(Pt 8):2005-2013. PubMed ID: 12904540 [TBL] [Abstract][Full Text] [Related]
13. Dirhamnose-lipid production by recombinant nonpathogenic bacterium Pseudomonas chlororaphis. Solaiman DK; Ashby RD; Gunther NW; Zerkowski JA Appl Microbiol Biotechnol; 2015 May; 99(10):4333-42. PubMed ID: 25661819 [TBL] [Abstract][Full Text] [Related]
14. Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically-engineered Escherichia coli. Du J; Zhang A; Hao J; Wang J Biotechnol Lett; 2017 Jul; 39(7):1041-1048. PubMed ID: 28374071 [TBL] [Abstract][Full Text] [Related]
15. The Pseudomonas aeruginosa rhlG and rhlAB genes are inversely regulated and RhlG is not required for rhamnolipid synthesis. Bazire A; Dufour A BMC Microbiol; 2014 Jun; 14():160. PubMed ID: 24943492 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of rhamnolipid congener synthesis in neotype Pseudomonas aeruginosa ATCC 10145 and two marine isolates. Du J; Zhang A; Zhang X; Si X; Cao J Bioresour Technol; 2019 Aug; 286():121380. PubMed ID: 31048264 [TBL] [Abstract][Full Text] [Related]
17. Microbial production of rhamnolipids: opportunities, challenges and strategies. Chong H; Li Q Microb Cell Fact; 2017 Aug; 16(1):137. PubMed ID: 28779757 [TBL] [Abstract][Full Text] [Related]
18. [Construction and optimization of Escherichia coli for producing rhamnolipid biosurfactant]. Gong Z; Peng Y; Zhang Y; Song G; Chen W; Jia S; Wang Q Sheng Wu Gong Cheng Xue Bao; 2015 Jul; 31(7):1050-62. PubMed ID: 26647580 [TBL] [Abstract][Full Text] [Related]
19. [Construction of mono/di-rhamnolipid ratios-manipulable strains and characterization of their corresponding surfactants' activity]. Zhao M; Zheng Y; Yu H; Ma L Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):786-798. PubMed ID: 38545977 [TBL] [Abstract][Full Text] [Related]
20. Heterologous production of rhamnolipids in Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 based on the endogenous production of N-acyl-homoserine lactones. González-Valdez A; Escalante A; Soberón-Chávez G Microb Biotechnol; 2024 Jan; 17(1):e14377. PubMed ID: 38041625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]