BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11359713)

  • 21. [Molecular arrangement of protochlorophyll aggregated forms in solid films].
    Bystrova MI; Safronova IA; Krasnovskiĭ AA
    Mol Biol (Mosk); 1982; 16(2):291-301. PubMed ID: 7070384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changing ratios of phototransformable protochlorophyll and protochlorophyllide of bean seedlings developing in the dark.
    Lancer HA; Cohen CE; Schiff JA
    Plant Physiol; 1976 Mar; 57(3):369-74. PubMed ID: 16659485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early and late plastid development in response to chill stress and heat stress in wheat seedlings.
    Mohanty S; Tripathy BC
    Protoplasma; 2011 Oct; 248(4):725-36. PubMed ID: 21063735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range.
    Wertin TM; McGuire MA; Teskey RO
    Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of the photoactive protochlorophyllide-protein complex in the light during the greening of barley.
    Franck F; Strzalka K
    FEBS Lett; 1992 Aug; 309(1):73-7. PubMed ID: 1511748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlorophyll synthesis in dark-grown pine primary needles.
    Schoefs B; Franck F
    Plant Physiol; 1998 Dec; 118(4):1159-68. PubMed ID: 9847090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra.
    Bostad PV; Reich P; Lee T
    Tree Physiol; 2003 Oct; 23(14):969-76. PubMed ID: 12952783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectroscopic properties of protochlorophyllide analyzed in situ in the course of etiolation and in illuminated leaves.
    Schoefs B; Bertrand M; Franck F
    Photochem Photobiol; 2000 Jul; 72(1):85-93. PubMed ID: 10911732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The two spectroscopically different short wavelength protochlorophyllide forms in pea epicotyls are both monomeric.
    Böddi B; Kis-Petik K; Kaposi AD; Fidy J; Sundqvist C
    Biochim Biophys Acta; 1998 Jul; 1365(3):531-540. PubMed ID: 9757084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of spectral forms of protochlorophyllide in the region 670-730 nm.
    Stadnichuk IN; Amirjani MR; Sundqvist C
    Photochem Photobiol Sci; 2005 Feb; 4(2):230-8. PubMed ID: 15696242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light-regulated pigment interconversion in pheophytin/chlorophyll-containing complexes formed during plant leaves greening.
    Ignatov NV; Litvin FF
    Photosynth Res; 1995 Jan; 46(3):445-53. PubMed ID: 24301639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoconversion of long-wavelength protochlorophyll native form Pchl 682/672 into chlorophyll Chl 715/696 in Chlorella vulgaris B-15.
    Ignatov NV; Litvin FF
    Photosynth Res; 1996 Dec; 50(3):271-83. PubMed ID: 24271965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue specific protochlorophyll(ide) forms in dark-forced shoots of grapevine (Vitis viniferaL.).
    Böddi B; Bòka K; Sundqvist C
    Photosynth Res; 2004; 82(2):141-50. PubMed ID: 16151870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of CO2 efflux rate and xylem CO2 partial pressure of young tree stems during the dormant season.
    Saveyn A; Steppe K; Lemeur R
    Commun Agric Appl Biol Sci; 2005; 70(2):245-9. PubMed ID: 16366318
    [No Abstract]   [Full Text] [Related]  

  • 35. Localized stem chilling alters carbon processes in the adjacent stem and in source leaves.
    De Schepper V; Vanhaecke L; Steppe K
    Tree Physiol; 2011 Nov; 31(11):1194-203. PubMed ID: 22001166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence lifetimes of protochlorophyllide in plants with different proportions of short-wavelength and long-wavelength protochlorophyllide spectral forms.
    Myśliwa-Kurdziel B; Amirjani MR; Strzałka K; Sundqvist C
    Photochem Photobiol; 2003 Aug; 78(2):205-12. PubMed ID: 12945590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of cell-differentiation and assembly of photosynthetic proteins during greening of etiolated Zea mays leaves using confocal fluorescence microspectroscopy at liquid-nitrogen temperature.
    Shibata Y; Katoh W; Tahara Y
    Biochim Biophys Acta; 2013 Apr; 1827(4):520-8. PubMed ID: 23416843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low temperature phototransformations of protochlorophyll(ide) in etiolated leaves.
    Ignatov NV; Belayeva OB; Litvin FF
    Photosynth Res; 1993 Nov; 38(2):117-24. PubMed ID: 24317907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Relationship between chlorophyll concentration and the energy reaction between protochlorophyll and chlorophyll in mixed associations].
    Zen'kevich EI; Kochubeev GA; Losev AP; Gurinovich GP
    Mol Biol (Mosk); 1977; 11(5):1039-56. PubMed ID: 618338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arabidopsis noncoding RNA modulates seedling greening during deetiolation.
    Wang Y; Li J; Deng XW; Zhu D
    Sci China Life Sci; 2018 Feb; 61(2):199-203. PubMed ID: 29143279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.