BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 11359927)

  • 1. Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering.
    Rudolf R; Salm T; Rustom A; Gerdes HH
    Mol Biol Cell; 2001 May; 12(5):1353-65. PubMed ID: 11359927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells.
    Rudolf R; Kögel T; Kuznetsov SA; Salm T; Schlicker O; Hellwig A; Hammer JA; Gerdes HH
    J Cell Sci; 2003 Apr; 116(Pt 7):1339-48. PubMed ID: 12615975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting of green fluorescent protein to neuroendocrine secretory granules: a new tool for real time studies of regulated protein secretion.
    Kaether C; Salm T; Glombik M; Almers W; Gerdes HH
    Eur J Cell Biol; 1997 Oct; 74(2):133-42. PubMed ID: 9352218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturation of secretory granules.
    Kögel T; Gerdes HH
    Results Probl Cell Differ; 2010; 50():1-20. PubMed ID: 19888562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells.
    Rosin-Arbesfeld R; Ihrke G; Bienz M
    EMBO J; 2001 Nov; 20(21):5929-39. PubMed ID: 11689433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of keratin dynamics: different contributions of the actin and microtubule systems.
    Wöll S; Windoffer R; Leube RE
    Eur J Cell Biol; 2005 Mar; 84(2-3):311-28. PubMed ID: 15819410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of peroxisomes in living plant cells reveals acto-myosin-dependent cytoplasmic streaming and peroxisome budding.
    Jedd G; Chua NH
    Plant Cell Physiol; 2002 Apr; 43(4):384-92. PubMed ID: 11978866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actin and microtubule regulation of trans-Golgi network architecture, and copper-dependent protein transport to the cell surface.
    Cobbold C; Coventry J; Ponnambalam S; Monaco AP
    Mol Membr Biol; 2004; 21(1):59-66. PubMed ID: 14668139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct roles of myosin Va in membrane remodeling and exocytosis of secretory granules.
    Kögel T; Rudolf R; Hodneland E; Hellwig A; Kuznetsov SA; Seiler F; Söllner TH; Barroso J; Gerdes HH
    Traffic; 2010 May; 11(5):637-50. PubMed ID: 20149155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of the actin cytoskeleton with microtubules regulates secretory organelle movement near the plasma membrane in human endothelial cells.
    Manneville JB; Etienne-Manneville S; Skehel P; Carter T; Ogden D; Ferenczi M
    J Cell Sci; 2003 Oct; 116(Pt 19):3927-38. PubMed ID: 12928328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the immature secretory granule, an intermediate in granule biogenesis.
    Tooze SA; Flatmark T; Tooze J; Huttner WB
    J Cell Biol; 1991 Dec; 115(6):1491-503. PubMed ID: 1757459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein.
    Wacker I; Kaether C; Krömer A; Migala A; Almers W; Gerdes HH
    J Cell Sci; 1997 Jul; 110 ( Pt 13)():1453-63. PubMed ID: 9224763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton.
    Mundy DI; Machleidt T; Ying YS; Anderson RG; Bloom GS
    J Cell Sci; 2002 Nov; 115(Pt 22):4327-39. PubMed ID: 12376564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endosome fusion and microtubule-based dynamics in the early endocytic pathway of dictyostelium.
    Clarke M; Köhler J; Heuser J; Gerisch G
    Traffic; 2002 Nov; 3(11):791-800. PubMed ID: 12383345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo dynamics of the F-actin-binding protein neurabin-II.
    Stephens DJ; Banting G
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):185-94. PubMed ID: 10620493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of H+-ATPase-mediated acidification in sorting and release of the regulated secretory protein chromogranin A: evidence for a vesiculogenic function.
    Taupenot L; Harper KL; O'Connor DT
    J Biol Chem; 2005 Feb; 280(5):3885-97. PubMed ID: 15542860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromogranin A induces the biogenesis of granules with calcium- and actin-dependent dynamics and exocytosis in constitutively secreting cells.
    Elias S; Delestre C; Ory S; Marais S; Courel M; Vazquez-Martinez R; Bernard S; Coquet L; Malagon MM; Driouich A; Chan P; Gasman S; Anouar Y; Montero-Hadjadje M
    Endocrinology; 2012 Sep; 153(9):4444-56. PubMed ID: 22851679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of actin polymerization and actin cables in actin-patch movement in Schizosaccharomyces pombe.
    Pelham RJ; Chang F
    Nat Cell Biol; 2001 Mar; 3(3):235-44. PubMed ID: 11231572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential dynamics of Rab3A and Rab27A on secretory granules.
    Handley MT; Haynes LP; Burgoyne RD
    J Cell Sci; 2007 Mar; 120(Pt 6):973-84. PubMed ID: 17311845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actin and non-muscle myosin II facilitate apical exocytosis of tear proteins in rabbit lacrimal acinar epithelial cells.
    Jerdeva GV; Wu K; Yarber FA; Rhodes CJ; Kalman D; Schechter JE; Hamm-Alvarez SF
    J Cell Sci; 2005 Oct; 118(Pt 20):4797-812. PubMed ID: 16219687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.