These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11360440)

  • 21. Quantification of bioregeneration of activated carbon and activated rice husk loaded with phenolic compounds.
    Ng SL; Seng CE; Lim PE
    Chemosphere; 2009 Jun; 75(10):1392-400. PubMed ID: 19307013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic studies on the adsorption of phenol, 4-chlorophenol, and 2,4-dichlorophenol from water using activated carbons.
    Tseng RL; Wu KT; Wu FC; Juang RS
    J Environ Manage; 2010 Nov; 91(11):2208-14. PubMed ID: 20621413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Batch adsorption of phenol onto physiochemical-activated coconut shell.
    Mohd Din AT; Hameed BH; Ahmad AL
    J Hazard Mater; 2009 Jan; 161(2-3):1522-9. PubMed ID: 18562090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic and isothermal studies on liquid-phase adsorption of 2,4-dichlorophenol by palm pith carbon.
    Sathishkumar M; Binupriya AR; Kavitha D; Yun SE
    Bioresour Technol; 2007 Mar; 98(4):866-73. PubMed ID: 16678406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.
    Ghatbandhe AS; Yenkie MK
    J Environ Sci Eng; 2008 Apr; 50(2):163-8. PubMed ID: 19295102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation of persistent organics can overcome adsorption-desorption hysteresis in biological activated carbon systems.
    Abromaitis V; Racys V; van der Marel P; Meulepas RJ
    Chemosphere; 2016 Apr; 149():183-9. PubMed ID: 26855223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood.
    Tancredi N; Medero N; Möller F; Píriz J; Plada C; Cordero T
    J Colloid Interface Sci; 2004 Nov; 279(2):357-63. PubMed ID: 15464799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioregeneration of mono-amine modified silica and granular activated carbon loaded with Acid Orange 7 in batch system.
    Al-Amrani WA; Lim PE; Seng CE; Ngah WS
    Bioresour Technol; 2012 Aug; 118():633-7. PubMed ID: 22704829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequential sorption and desorption of chlorinated phenols in organoclays.
    Kim JH; Shin WS; Kim YH; Choi SJ; Jeon YW; Song DI
    Water Sci Technol; 2003; 47(9):59-64. PubMed ID: 12830941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of adsorption characteristics of 2,4-dichlorophenol from aqueous solutions by activated carbon fiber.
    Wang JP; Feng HM; Yu HQ
    J Hazard Mater; 2007 Jun; 144(1-2):200-7. PubMed ID: 17118548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon.
    Mohamed EF; Andriantsiferana C; Wilhelm AM; Delmas H
    Environ Technol; 2011; 32(11-12):1325-36. PubMed ID: 21970174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of phenol and chlorophenols from water by coir pith carbon: equilibrium and rate studies.
    Namasivayam C; Kavitha D
    J Environ Sci Eng; 2004 Jul; 46(3):217-32. PubMed ID: 16669312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porogen effect on characteristics of banana pith carbon and the sorption of dichlorophenols.
    Sathishkumar M; Vijayaraghavan K; Binupriya AR; Stephan AM; Choi JG; Yun SE
    J Colloid Interface Sci; 2008 Apr; 320(1):22-9. PubMed ID: 18221943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Treatment of phenolic wastewater using agricultural wastes as an adsorbent in a sequencing batch reactor.
    Lee KM; Lim PE
    Water Sci Technol; 2003; 47(10):41-7. PubMed ID: 12862215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of phenols by papermill sludges.
    Calace N; Nardi E; Petronio BM; Pietroletti M
    Environ Pollut; 2002; 118(3):315-9. PubMed ID: 12009128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches.
    Alam MZ; Muyibi SA; Toramae J
    J Environ Sci (China); 2007; 19(6):674-7. PubMed ID: 17969639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial regeneration of spent activated carbon dispersed with organic contaminants: mechanism, efficiency, and kinetic models.
    Nath K; Bhakhar MS
    Environ Sci Pollut Res Int; 2011 May; 18(4):534-46. PubMed ID: 21152991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution.
    Kumar S; Zafar M; Prajapati JK; Kumar S; Kannepalli S
    J Hazard Mater; 2011 Jan; 185(1):287-94. PubMed ID: 20934806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New approach for the assessment of the contribution of adsorption, biodegradation and self-bioregeneration in the dynamic process of biologically active carbon functioning.
    Smolin S; Kozyatnyk I; Klymenko N
    Chemosphere; 2020 Jun; 248():126022. PubMed ID: 32006837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: isotherms, kinetics and thermodynamics.
    Wu J; Yu HQ
    J Hazard Mater; 2006 Sep; 137(1):498-508. PubMed ID: 16621252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.