BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11360441)

  • 1. Metal removal by thermally activated clay marl.
    Stefanova RY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(3):293-306. PubMed ID: 11360441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of metal ions from water solutions by iron/cobalt oxide coated keramzite.
    Stefanova RY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(7):1287-302. PubMed ID: 11545353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of aqueous cation composition on heavy metal mobility in a natural clay.
    Lim TT; Tay JH; Teh CI
    Water Environ Res; 2002; 74(4):346-53. PubMed ID: 12413135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of mercury(II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay.
    Manohar DM; Krishnan KA; Anirudhan TS
    Water Res; 2002 Mar; 36(6):1609-19. PubMed ID: 11996349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.
    Chaturvedi PK; Seth CS; Misra V
    J Hazard Mater; 2007 Aug; 147(3):698-705. PubMed ID: 17303325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal interactions with phosphatic clay: sorption and desorption behavior.
    Singh SP; Ma LQ; Harris WG
    J Environ Qual; 2001; 30(6):1961-8. PubMed ID: 11790002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead removal from aqueous solutions by a Tunisian smectitic clay.
    Chaari I; Fakhfakh E; Chakroun S; Bouzid J; Boujelben N; Feki M; Rocha F; Jamoussi F
    J Hazard Mater; 2008 Aug; 156(1-3):545-51. PubMed ID: 18243536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral.
    El-Bayaa AA; Badawy NA; Alkhalik EA
    J Hazard Mater; 2009 Oct; 170(2-3):1204-9. PubMed ID: 19524366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of aqueous lead removal by phosphatic clay: equilibrium and kinetic studies.
    Singh SP; Ma LQ; Hendry MJ
    J Hazard Mater; 2006 Aug; 136(3):654-62. PubMed ID: 16487656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal removal from water by sorption using surfactant-modified montmorillonite.
    Lin SH; Juang RS
    J Hazard Mater; 2002 Jun; 92(3):315-26. PubMed ID: 12031615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmenting granular activated carbon with natural clay for multicomponent sorption of heavy metals from aqueous solutions.
    Mu'azu ND; Essa MH; Lukman S
    Water Sci Technol; 2017 Oct; 76(7-8):2213-2221. PubMed ID: 29068351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay.
    Vieira MG; Neto AF; Gimenes ML; da Silva MG
    J Hazard Mater; 2010 May; 177(1-3):362-71. PubMed ID: 20042281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay.
    Ozdes D; Duran C; Senturk HB
    J Environ Manage; 2011 Dec; 92(12):3082-90. PubMed ID: 21856065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Cd, Cu and Zn ions from aqueous solutions using natural and Fe modified sepiolite, zeolite and palygorskite clay minerals.
    Bahabadi FN; Farpoor MH; Mehrizi MH
    Water Sci Technol; 2017 Jan; 75(2):340-349. PubMed ID: 28112661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline.
    Jiang K; Sun TH; Sun LN; Li HB
    J Environ Sci (China); 2006; 18(6):1221-5. PubMed ID: 17294969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals.
    Chalermyanont T; Arrykul S; Charoenthaisong N
    Waste Manag; 2009 Jan; 29(1):117-27. PubMed ID: 18550353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite.
    Wang XS; Huang J; Hu HQ; Wang J; Qin Y
    J Hazard Mater; 2007 Apr; 142(1-2):468-76. PubMed ID: 17010513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of individual sorbents to the control of heavy metal activity in sandy soil.
    Weng L; Temminghoff EJ; Van Riemsdijk WH
    Environ Sci Technol; 2001 Nov; 35(22):4436-43. PubMed ID: 11757598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure.
    Zhou W; Ren L; Zhu L
    Environ Pollut; 2017 Apr; 223():247-254. PubMed ID: 28108163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.