These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli. Kornberg HL; Lambourne LT; Sproul AA Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1808-12. PubMed ID: 10677538 [TBL] [Abstract][Full Text] [Related]
3. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752 [TBL] [Abstract][Full Text] [Related]
4. The complete phosphotransferase system in Escherichia coli. Tchieu JH; Norris V; Edwards JS; Saier MH J Mol Microbiol Biotechnol; 2001 Jul; 3(3):329-46. PubMed ID: 11361063 [TBL] [Abstract][Full Text] [Related]
5. [Isolation and properties of mutants devoid of pseudo-HPr activity of the fructose transfer system in Escherichia coli K12]. Sergeev KV; Umiarov AM; Dobrynina OIu; Bol'shakova TN; Gershanovich VN Genetika; 1997 Mar; 33(3):321-7. PubMed ID: 9244762 [TBL] [Abstract][Full Text] [Related]
6. [The multifunctional fructose-specific component of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli K12--fruA gene product]. Dobrynina OIu; Erlagaeva RS; Umiarov AM; Bol'shakova TN Mol Gen Mikrobiol Virusol; 2001; (4):18-22. PubMed ID: 11816114 [TBL] [Abstract][Full Text] [Related]
7. A route for fructose utilization by Escherichia coli involving the fucose regulon. Kornberg H; Lourenco C Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19496-9. PubMed ID: 17159144 [TBL] [Abstract][Full Text] [Related]
8. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli. Kornberg HL; Lambourne LT Proc Biol Sci; 1992 Oct; 250(1327):51-5. PubMed ID: 1361062 [TBL] [Abstract][Full Text] [Related]
9. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). Plumbridge J J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067 [TBL] [Abstract][Full Text] [Related]
10. Genetic control of manno(fructo)kinase activity in Escherichia coli. Sproul AA; Lambourne LT; Jean-Jacques D J; Kornberg HL Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15257-9. PubMed ID: 11742072 [TBL] [Abstract][Full Text] [Related]
11. Corynebacterium diphtheriae: a PTS view to the genome. Parche S; Thomae AW; Schlicht M; Titgemeyer F J Mol Microbiol Biotechnol; 2001 Jul; 3(3):415-22. PubMed ID: 11361072 [TBL] [Abstract][Full Text] [Related]
12. Coordinated Regulation of the EII Zeng L; Chakraborty B; Farivar T; Burne RA Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28821551 [TBL] [Abstract][Full Text] [Related]
13. Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI. Wagner A; Küster-Schöck E; Hillen W J Mol Microbiol Biotechnol; 2000 Oct; 2(4):587-92. PubMed ID: 11075936 [TBL] [Abstract][Full Text] [Related]
14. Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. Loo CY; Mitrakul K; Voss IB; Hughes CV; Ganeshkumar N J Bacteriol; 2003 Nov; 185(21):6241-54. PubMed ID: 14563858 [TBL] [Abstract][Full Text] [Related]
15. Fructose utilization and pathogenicity of Spiroplasma citri: characterization of the fructose operon. Gaurivaud P; Laigret F; Garnier M; Bove JM Gene; 2000 Jul; 252(1-2):61-9. PubMed ID: 10903438 [TBL] [Abstract][Full Text] [Related]
16. [ptsS: a new regulatory element of the fructose operon in Escherichia coli]. Bol'shakova TN; Erlagaeva RS; Kyzylova NA; Germanovich VN Mol Gen Mikrobiol Virusol; 1988 Feb; (2):41-4. PubMed ID: 3287147 [TBL] [Abstract][Full Text] [Related]
17. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. Martin-Verstraete I; Débarbouillé M; Klier A; Rapoport G J Mol Biol; 1990 Aug; 214(3):657-71. PubMed ID: 2117666 [TBL] [Abstract][Full Text] [Related]
18. Novel phosphotransferase system genes revealed by bacterial genome analysis: unique, putative fructose- and glucoside-specific systems. Reizer J; Michotey V; Reizer A; Saier MH Protein Sci; 1994 Mar; 3(3):440-50. PubMed ID: 8019415 [TBL] [Abstract][Full Text] [Related]
19. Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. Görke B; Rak B EMBO J; 1999 Jun; 18(12):3370-9. PubMed ID: 10369677 [TBL] [Abstract][Full Text] [Related]
20. Relationship between pseudo-HPr and the PEP: fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli. Geerse RH; Ruig CR; Schuitema AR; Postma PW Mol Gen Genet; 1986 Jun; 203(3):435-44. PubMed ID: 3528748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]