These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 11361070)
1. Use of Staphylococcus aureus 6-P-beta-galactosidase and GFP as fusion partners for lactose-specific IIC domain from Staphylococcus aureus. Kowolik CM; Hengstenberg W J Mol Microbiol Biotechnol; 2001 Jul; 3(3):395-400. PubMed ID: 11361070 [TBL] [Abstract][Full Text] [Related]
2. The lactose transporter of Staphylococcus aureus--overexpression, purification and characterization of the histidine-tagged domains IIC and IIB. Kowolik CM; Hengstenberg W Eur J Biochem; 1998 Oct; 257(2):389-94. PubMed ID: 9826184 [TBL] [Abstract][Full Text] [Related]
3. Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate: carbohydrate phosphotransferase system (PTS). Esquinas-Rychen M; Erni B J Mol Microbiol Biotechnol; 2001 Jul; 3(3):361-70. PubMed ID: 11361066 [TBL] [Abstract][Full Text] [Related]
4. Green fluorescent protein/beta-galactosidase double reporters for visualizing Drosophila gene expression patterns. Timmons L; Becker J; Barthmaier P; Fyrberg C; Shearn A; Fyrberg E Dev Genet; 1997; 20(4):338-47. PubMed ID: 9254908 [TBL] [Abstract][Full Text] [Related]
5. Membrane docking of an aggregation-prone protein improves its solubilization. Tagourti J; Malki A; Kern R; d'Alençon E; Richarme G Gene; 2008 Dec; 426(1-2):32-8. PubMed ID: 18809475 [TBL] [Abstract][Full Text] [Related]
6. Lactose-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus. Purification of the histidine-tagged transmembrane component IICBLac and its hydrophilic IIB domain by metal-affinity chromatography, and functional characterization. Peters D; Frank R; Hengstenberg W Eur J Biochem; 1995 Mar; 228(3):798-804. PubMed ID: 7737179 [TBL] [Abstract][Full Text] [Related]
7. A functional protein hybrid between the glucose transporter and the N-acetylglucosamine transporter of Escherichia coli. Hummel U; Nuoffer C; Zanolari B; Erni B Protein Sci; 1992 Mar; 1(3):356-62. PubMed ID: 1304343 [TBL] [Abstract][Full Text] [Related]
9. Functional expression and cellular localization of a green fluorescent protein-tagged proline transporter in Aspergillus nidulans. Tavoularis S; Scazzocchio C; Sophianopoulou V Fungal Genet Biol; 2001 Jul; 33(2):115-25. PubMed ID: 11456464 [TBL] [Abstract][Full Text] [Related]
10. Production of a site specifically cleavable P-glycoprotein-beta-galactosidase fusion protein. Shimabuku AM; Saeki T; Ueda K; Komano T Agric Biol Chem; 1991 Apr; 55(4):1075-80. PubMed ID: 1369454 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. de Vos WM; Boerrigter I; van Rooyen RJ; Reiche B; Hengstenberg W J Biol Chem; 1990 Dec; 265(36):22554-60. PubMed ID: 2125052 [TBL] [Abstract][Full Text] [Related]
12. Structure and function of the glucose PTS transporter from Escherichia coli. Jeckelmann JM; Harder D; Mari SA; Meury M; Ucurum Z; Müller DJ; Erni B; Fotiadis D J Struct Biol; 2011 Dec; 176(3):395-403. PubMed ID: 21996078 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a thermostable recombinant beta-galactosidase from Thermotoga maritima. Kim CS; Ji ES; Oh DK J Appl Microbiol; 2004; 97(5):1006-14. PubMed ID: 15479416 [TBL] [Abstract][Full Text] [Related]
14. Glucose transporter mutants of Escherichia coli K-12 with changes in substrate recognition of IICB(Glc) and induction behavior of the ptsG gene. Zeppenfeld T; Larisch C; Lengeler JW; Jahreis K J Bacteriol; 2000 Aug; 182(16):4443-52. PubMed ID: 10913077 [TBL] [Abstract][Full Text] [Related]
15. Isolation, characterization and nucleotide sequence of the Streptococcus mutans lactose-specific enzyme II (lacE) gene of the PTS and the phospho-beta-galactosidase (lacG) gene. Honeyman AL; Curtiss R J Gen Microbiol; 1993 Nov; 139(11):2685-94. PubMed ID: 8277252 [TBL] [Abstract][Full Text] [Related]
16. In vivo production of scFv-displaying biopolymer beads using a self-assembly-promoting fusion partner. Grage K; Rehm BH Bioconjug Chem; 2008 Jan; 19(1):254-62. PubMed ID: 18088086 [TBL] [Abstract][Full Text] [Related]
17. A bifunctional chimeric protein consisting of MutS and beta-galactosidase. Sachadyn P; Stanisławska-Sachadyn A; Kur J J Biotechnol; 2007 Jan; 127(2):229-34. PubMed ID: 16934899 [TBL] [Abstract][Full Text] [Related]
18. The activity of the lactose transporter from Streptococcus thermophilus is increased by phosphorylated IIA and the action of beta-galactosidase. Geertsma ER; Duurkens RH; Poolman B Biochemistry; 2005 Dec; 44(48):15889-97. PubMed ID: 16313191 [TBL] [Abstract][Full Text] [Related]
19. Photoinactivation of the Staphylococcus aureus Lactose-Specific EIICB Phosphotransferase Component with p-azidophenyl-β-D-Galactoside and Phosphorylation of the Covalently Bound Substrate. Sossna-Wunder G; Hengstenberg W; Briozzo P; Deutscher J J Mol Microbiol Biotechnol; 2018; 28(3):147-158. PubMed ID: 30522128 [TBL] [Abstract][Full Text] [Related]
20. 6-Phospho-beta-galactosidases of gram-positive and 6-phospho-beta-glucosidase B of gram-negative bacteria: comparison of structure and function by kinetic and immunological methods and mutagenesis of the lacG gene of Staphylococcus aureus. Witt E; Frank R; Hengstenberg W Protein Eng; 1993 Nov; 6(8):913-20. PubMed ID: 8309940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]