These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 11361075)
41. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939 [TBL] [Abstract][Full Text] [Related]
42. The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Muscariello L; Marasco R; De Felice M; Sacco M Appl Environ Microbiol; 2001 Jul; 67(7):2903-7. PubMed ID: 11425700 [TBL] [Abstract][Full Text] [Related]
43. In vitro DNA binding of purified CcpA protein from Lactococcus lactis IL1403. Kowalczyk M; Borcz B; Płochocka D; Bardowski J Acta Biochim Pol; 2007; 54(1):71-8. PubMed ID: 17356715 [TBL] [Abstract][Full Text] [Related]
45. An acetoin-regulated expression system of Bacillus subtilis. Silbersack J; Jürgen B; Hecker M; Schneidinger B; Schmuck R; Schweder T Appl Microbiol Biotechnol; 2006 Dec; 73(4):895-903. PubMed ID: 16944132 [TBL] [Abstract][Full Text] [Related]
46. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD. Puri-Taneja A; Schau M; Chen Y; Hulett FM J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317 [TBL] [Abstract][Full Text] [Related]
47. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes. Nagarajan DR; Krishnan C Protein Expr Purif; 2010 Mar; 70(1):122-8. PubMed ID: 19815075 [TBL] [Abstract][Full Text] [Related]
48. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis. Hirooka K; Kodoi Y; Satomura T; Fujita Y J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933 [TBL] [Abstract][Full Text] [Related]
49. CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. Jourlin-Castelli C; Mani N; Nakano MM; Sonenshein AL J Mol Biol; 2000 Jan; 295(4):865-78. PubMed ID: 10656796 [TBL] [Abstract][Full Text] [Related]
50. Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system. Jankovic I; Egeter O; Brückner R J Bacteriol; 2001 Jan; 183(2):580-6. PubMed ID: 11133951 [TBL] [Abstract][Full Text] [Related]
51. Expression of the promoter for the maltogenic amylase gene in Bacillus subtilis 168. Kim DY; Cha CH; Oh WS; Yoon YJ; Kim JW J Microbiol; 2004 Dec; 42(4):319-27. PubMed ID: 15650689 [TBL] [Abstract][Full Text] [Related]
52. Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol (iol) operon. Miwa Y; Fujita Y J Bacteriol; 2001 Oct; 183(20):5877-84. PubMed ID: 11566986 [TBL] [Abstract][Full Text] [Related]
53. Molecular characterization of CcpA and involvement of this protein in transcriptional regulation of lactate dehydrogenase and pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis. Asanuma N; Yoshii T; Hino T Appl Environ Microbiol; 2004 Sep; 70(9):5244-51. PubMed ID: 15345406 [TBL] [Abstract][Full Text] [Related]
54. Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI. Wagner A; Küster-Schöck E; Hillen W J Mol Microbiol Biotechnol; 2000 Oct; 2(4):587-92. PubMed ID: 11075936 [TBL] [Abstract][Full Text] [Related]
55. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. Martin-Verstraete I; Stülke J; Klier A; Rapoport G J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486 [TBL] [Abstract][Full Text] [Related]
56. Glucose uptake pathway-specific regulation of synthesis of neotrehalosadiamine, a novel autoinducer produced in Bacillus subtilis. Inaoka T; Ochi K J Bacteriol; 2007 Jan; 189(1):65-75. PubMed ID: 17056753 [TBL] [Abstract][Full Text] [Related]
57. Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus. Egeter O; Brückner R Mol Microbiol; 1996 Aug; 21(4):739-49. PubMed ID: 8878037 [TBL] [Abstract][Full Text] [Related]
58. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Hueck CJ; Hillen W Mol Microbiol; 1995 Feb; 15(3):395-401. PubMed ID: 7540244 [TBL] [Abstract][Full Text] [Related]
59. Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. Martin-Verstraete I; Deutscher J; Galinier A J Bacteriol; 1999 May; 181(9):2966-9. PubMed ID: 10217795 [TBL] [Abstract][Full Text] [Related]
60. Bacillus subtilis ilvB operon: an intersection of global regulons. Shivers RP; Sonenshein AL Mol Microbiol; 2005 Jun; 56(6):1549-59. PubMed ID: 15916605 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]