BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11361125)

  • 1. Isolation and characterization of two peroxidases from Cucumis sativus.
    Battistuzzi G; D'Onofrio M; Loschi L; Sola M
    Arch Biochem Biophys; 2001 Apr; 388(1):100-12. PubMed ID: 11361125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the solution reactivity of a basic heme peroxidase from Cucumis sativus.
    Battistuzzi G; Bellei M; Bortolotti CA; Rocco GD; Leonardi A; Sola M
    Arch Biochem Biophys; 2004 Mar; 423(2):317-31. PubMed ID: 15001396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Asp245-->Asn mutant of Coprinus cinereus peroxidase. Characterization by 1H-NMR spectroscopy and comparison with the wild-type enzyme.
    Veitch NC; Gao Y; Welinder KG
    Biochemistry; 1996 Nov; 35(45):14370-80. PubMed ID: 8916924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic characterization of the ferric states of Amphitrite ornata dehaloperoxidase and Notomastus lobatus chloroperoxidase: His-ligated peroxidases with globin-like proximal and distal properties.
    Osborne RL; Sumithran S; Coggins MK; Chen YP; Lincoln DE; Dawson JH
    J Inorg Biochem; 2006 May; 100(5-6):1100-8. PubMed ID: 16603247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of calcium in maintaining the heme environment of manganese peroxidase.
    Sutherland GR; Zapanta LS; Tien M; Aust SD
    Biochemistry; 1997 Mar; 36(12):3654-62. PubMed ID: 9132018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Notomastus lobatus chloroperoxidase and Amphitrite ornata dehaloperoxidase both contain histidine as their proximal heme iron ligand.
    Roach MP; Chen YP; Woodin SA; Lincoln DE; Lovell CR; Dawson JH
    Biochemistry; 1997 Feb; 36(8):2197-202. PubMed ID: 9047320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical role of Ca2+ ions in the reaction mechanism of Euphorbia characias peroxidase.
    Medda R; Padiglia A; Longu S; Bellelli A; Arcovito A; Cavallo S; Pedersen JZ; Floris G
    Biochemistry; 2003 Jul; 42(29):8909-18. PubMed ID: 12873152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox chemistry and acid-base equilibria of mitochondrial plant cytochromes c.
    Battistuzzi G; Borsari M; Cowan JA; Eicken C; Loschi L; Sola M
    Biochemistry; 1999 Apr; 38(17):5553-62. PubMed ID: 10220343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further studies on the inactivation by sodium azide of lignin peroxidase from Phanerochaete chrysosporium.
    Tatarko M; Bumpus JA
    Arch Biochem Biophys; 1997 Mar; 339(1):200-9. PubMed ID: 9056250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral changes of lignin peroxidase during reversible inactivation.
    Nie G; Aust SD
    Biochemistry; 1997 Apr; 36(17):5113-9. PubMed ID: 9136871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cationic ascorbate peroxidase isoenzyme II from tea: structural insights into the heme pocket of a unique hybrid peroxidase.
    Heering HA; Jansen MA; Thorneley RN; Smulevich G
    Biochemistry; 2001 Aug; 40(34):10360-70. PubMed ID: 11513615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox thermodynamics of the Fe(III)/Fe(II) couple of human myeloperoxidase in its high-spin and low-spin forms.
    Battistuzzi G; Bellei M; Zederbauer M; Furtmüller PG; Sola M; Obinger C
    Biochemistry; 2006 Oct; 45(42):12750-5. PubMed ID: 17042493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1H-NMR characterization of cucumber peroxidases.
    Dugad LB; Goff HM; Abeles FB
    Biochim Biophys Acta; 1991 Dec; 1118(1):36-40. PubMed ID: 1764475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalase-peroxidase active site restructuring by a distant and "inactive" domain.
    Baker RD; Cook CO; Goodwin DC
    Biochemistry; 2006 Jun; 45(23):7113-21. PubMed ID: 16752901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified microperoxidases exhibit different reactivity towards phenolic substrates.
    Dallacosta C; Casella L; Monzani E
    Chembiochem; 2004 Dec; 5(12):1692-9. PubMed ID: 15532028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and molecular properties of ascorbate peroxidase from bovine eye.
    Wada N; Kinoshita S; Matsuo M; Amako K; Miyake C; Asada K
    Biochem Biophys Res Commun; 1998 Jan; 242(2):256-61. PubMed ID: 9446780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways.
    Pérez-Boada M; Ruiz-Dueñas FJ; Pogni R; Basosi R; Choinowski T; Martínez MJ; Piontek K; Martínez AT
    J Mol Biol; 2005 Nov; 354(2):385-402. PubMed ID: 16246366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative reactivity study of microperoxidases based on hemin, mesohemin and deuterohemin.
    Ryabova ES; Rydberg P; Kolberg M; Harbitz E; Barra AL; Ryde U; Andersson KK; Nordlander E
    J Inorg Biochem; 2005 Mar; 99(3):852-63. PubMed ID: 15708807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distal site aspartate is essential in the catalase activity of catalase-peroxidases.
    Jakopitsch C; Auer M; Regelsberger G; Jantschko W; Furtmüller PG; Rüker F; Obinger C
    Biochemistry; 2003 May; 42(18):5292-300. PubMed ID: 12731870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.