BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 11361141)

  • 1. Failure of exogenous NADH and cytochrome c to support energy-dependent swelling of mitochondria.
    Lemeshko VV
    Arch Biochem Biophys; 2001 Apr; 388(1):60-6. PubMed ID: 11361141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain.
    Marzulli D; La Piana G; Cafagno L; Fransvea E; Lofrumento NE
    Arch Biochem Biophys; 1995 May; 319(1):36-48. PubMed ID: 7771804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valinomycin induced energy-dependent mitochondrial swelling, cytochrome c release, cytosolic NADH/cytochrome c oxidation and apoptosis.
    Lofrumento DD; La Piana G; Abbrescia DI; Palmitessa V; La Pesa V; Marzulli D; Lofrumento NE
    Apoptosis; 2011 Oct; 16(10):1004-13. PubMed ID: 21739274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane potential generation coupled to oxidation of external NADH in liver mitochondria.
    Bodrova ME; Dedukhova VI; Mokhova EN; Skulachev VP
    FEBS Lett; 1998 Sep; 435(2-3):269-74. PubMed ID: 9762923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of transmembrane electrical potential during NADH oxidation via the external pathway and the fatty acid uncoupling effect after transient opening of the Ca2+-dependent cyclosporin A-sensitive pore in liver mitochondria.
    Bodrova ME; Dedukhova VI; Mokhova EN
    Biochemistry (Mosc); 2000 Apr; 65(4):477-84. PubMed ID: 10810187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porin and cytochrome oxidase containing contact sites involved in the oxidation of cytosolic NADH.
    La Piana G; Marzulli D; Gorgoglione V; Lofrumento NE
    Arch Biochem Biophys; 2005 Apr; 436(1):91-100. PubMed ID: 15752713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation by pro-apoptotic valinomycin of cytosolic NADH/cytochrome c electron transport pathway-Effect of SH reagents.
    Lofrumento DD; La Piana G; Palmitessa V; Abbrescia DI; Lofrumento NE
    Int J Biochem Cell Biol; 2016 Jul; 76():12-8. PubMed ID: 27129925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes.
    Bernardi P; Azzone GF
    J Biol Chem; 1981 Jul; 256(14):7187-92. PubMed ID: 6265441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation and reduction of exogenous cytochrome c by the activity of the respiratory chain.
    Lofrumento NE; Marzulli D; Cafagno L; La Piana G; Cipriani T
    Arch Biochem Biophys; 1991 Jul; 288(1):293-301. PubMed ID: 1654829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mg(2+) induces intermembrane electron transport by cytochrome c desorption in mitochondria with the ruptured outer membrane.
    Lemeshko VV
    FEBS Lett; 2000 Apr; 472(1):5-8. PubMed ID: 10781794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Intermembrane electron transport in the dynamics of high-amplitude swelling of rat liver mitochondria].
    Lemeshko VV; Shekh VE; Aleksenko TV
    Ukr Biokhim Zh (1978); 1995; 67(2):28-34. PubMed ID: 8592781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of cytochrome c-mediated extramitochondrial NADH oxidation by contact site density.
    Marzulli D; La Piana G; Fransvea E; Lofrumento NE
    Biochem Biophys Res Commun; 1999 Jun; 259(2):325-30. PubMed ID: 10362507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP synthesis during exogenous NADH oxidation. A reappraisal.
    Bernardi P; Azzone GF
    Biochim Biophys Acta; 1982 Jan; 679(1):19-27. PubMed ID: 6275889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Potential activity of the external pathway of NADH oxidation in mitochondria].
    Fedotcheva NI; Pronevich LA; Mironova GD
    Ukr Biokhim Zh (1978); 1985; 57(4):38-43. PubMed ID: 2994270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Interaction of cytochrome c with mitochondrial proteins and cybacrone-dextran].
    Shol'ts KF; Mamaev DV
    Biokhimiia; 1985 Nov; 50(11):1877-83. PubMed ID: 2415172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome c sorption-desorption effects on the external NADH oxidation by mitochondria: experimental and computational study.
    Lemeshko VV
    J Biol Chem; 2002 May; 277(20):17751-7. PubMed ID: 11886867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial membrane potential supported by exogenous cytochrome c oxidation mimics the early stages of apoptosis.
    La Piana G; Fransvea E; Marzulli D; Lofrumento NE
    Biochem Biophys Res Commun; 1998 May; 246(2):556-61. PubMed ID: 9610401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.