These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11367807)

  • 1. Finite element modeling of transient ultrasonic waves in linear viscoelastic media.
    Stucky P; Lord W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):6-16. PubMed ID: 11367807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development and validation of a numerical integration method for non-linear viscoelastic modeling.
    Ramo NL; Puttlitz CM; Troyer KL
    PLoS One; 2018; 13(1):e0190137. PubMed ID: 29293558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of the viscoelastic behavior of collagen gel from dynamic oscillatory shear measurements.
    Li H; Zhang Y
    Biorheology; 2014; 51(6):369-80. PubMed ID: 25633438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media.
    Palmeri ML; Qiang B; Chen S; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):78-92. PubMed ID: 28026760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forward and inverse viscoelastic wave scattering by irregular inclusions for shear wave elastography.
    Bernard S; Cloutier G
    J Acoust Soc Am; 2017 Oct; 142(4):2346. PubMed ID: 29092551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling shear waves through a viscoelastic medium induced by acoustic radiation force.
    Lee KH; Szajewski BA; Hah Z; Parker KJ; Maniatty AM
    Int J Numer Method Biomed Eng; 2012; 28(6-7):678-96. PubMed ID: 25364845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography.
    Qiang B; Brigham JC; Aristizabal S; Greenleaf JF; Zhang X; Urban MW
    Phys Med Biol; 2015 Feb; 60(3):1289-306. PubMed ID: 25591921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulations of magnetic resonance elastography using finite element analysis with a linear heterogeneous viscoelastic model.
    Tomita S; Suzuki H; Kajiwara I; Nakamura G; Jiang Y; Suga M; Obata T; Tadano S
    J Vis (Tokyo); 2018; 21(1):133-145. PubMed ID: 29367830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound viscoelasticity assessment using an adaptive torsional shear wave propagation method.
    Ouared A; Kazemirad S; Montagnon E; Cloutier G
    Med Phys; 2016 Apr; 43(4):1603. PubMed ID: 27036560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation.
    Puso MA; Weiss JA
    J Biomech Eng; 1998 Feb; 120(1):62-70. PubMed ID: 9675682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guided waves propagating in sandwich structures made of anisotropic, viscoelastic, composite materials.
    Castaings M; Hosten B
    J Acoust Soc Am; 2003 May; 113(5):2622-34. PubMed ID: 12765380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of shear wave propagation in a soft medium using a pseudospectral time domain method.
    Bastard C; Remeniéras JP; Callé S; Sandrin L
    J Acoust Soc Am; 2009 Oct; 126(4):2108-16. PubMed ID: 19813820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modeling of the temperature rise due to the propagation of ultrasonic waves in viscoelastic materials and experimental validation.
    Hosten B; Bacon C; Biateau C
    J Acoust Soc Am; 2008 Dec; 124(6):3491-6. PubMed ID: 19206778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation.
    Ning X; Zhu Q; Lanir Y; Margulies SS
    J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing 3-D maps of the local viscoelastic properties using a finite-amplitude modulated radiation force.
    Giannoula A; Cobbold R; Bezerianos A
    Ultrasonics; 2014 Feb; 54(2):563-75. PubMed ID: 24011778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact.
    Brands DW; Peters GW; Bovendeerd PH
    J Biomech; 2004 Jan; 37(1):127-34. PubMed ID: 14672576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission.
    Naili S; Vu MB; Grimal Q; Talmant M; Desceliers C; Soize C; Haïat G
    J Acoust Soc Am; 2010 Apr; 127(4):2622-34. PubMed ID: 20370043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unified viscoelasticity: Applying discrete element models to soft tissues with two characteristic times.
    Anssari-Benam A; Bucchi A; Bader DL
    J Biomech; 2015 Sep; 48(12):3128-34. PubMed ID: 26232814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.