These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11368170)

  • 1. Brief history of glyoxalase I and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations.
    Creighton DJ; Hamilton DS
    Arch Biochem Biophys; 2001 Mar; 387(1):1-10. PubMed ID: 11368170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue.
    Cameron AD; Ridderström M; Olin B; Kavarana MJ; Creighton DJ; Mannervik B
    Biochemistry; 1999 Oct; 38(41):13480-90. PubMed ID: 10521255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction mechanism of the binuclear zinc enzyme glyoxalase II - A theoretical study.
    Chen SL; Fang WH; Himo F
    J Inorg Biochem; 2009 Feb; 103(2):274-81. PubMed ID: 19062100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic mechanism of glyoxalase I: a theoretical study.
    Himo F; Siegbahn PE
    J Am Chem Soc; 2001 Oct; 123(42):10280-9. PubMed ID: 11603978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ni2+-activated glyoxalase I from Escherichia coli: substrate specificity, kinetic isotope effects and evolution within the βαβββ superfamily.
    Mullings KY; Sukdeo N; Suttisansanee U; Ran Y; Honek JF
    J Inorg Biochem; 2012 Mar; 108():133-40. PubMed ID: 22173092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of the proposed rate-determining step of the glyoxalase I reaction.
    Feierberg I; Cameron AD; Aqvist J
    FEBS Lett; 1999 Jun; 453(1-2):90-4. PubMed ID: 10403382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glyoxalase I--structure, function and a critical role in the enzymatic defence against glycation.
    Thornalley PJ
    Biochem Soc Trans; 2003 Dec; 31(Pt 6):1343-8. PubMed ID: 14641060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural evidence for a 1,2-enediolate intermediate in the reaction catalyzed by 3-keto-L-gulonate 6-phosphate decarboxylase, a member of the orotidine 5'-monophosphate decarboxylase suprafamily.
    Wise EL; Yew WS; Gerlt JA; Rayment I
    Biochemistry; 2003 Oct; 42(42):12133-42. PubMed ID: 14567674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site structure and mechanism of human glyoxalase I-an ab initio theoretical study.
    Richter U; Krauss M
    J Am Chem Soc; 2001 Jul; 123(29):6973-82. PubMed ID: 11459475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of mannose-6-phosphate isomerase from Salmonella typhimurium bound to metal atoms and substrate: implications for catalytic mechanism.
    Sagurthi SR; Gowda G; Savithri HS; Murthy MR
    Acta Crystallogr D Biol Crystallogr; 2009 Jul; 65(Pt 7):724-32. PubMed ID: 19564693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coenzyme B12-dependent diol dehydratase is a potassium ion-requiring calcium metalloenzyme: evidence that the substrate-coordinated metal ion is calcium.
    Toraya T; Honda S; Mori K
    Biochemistry; 2010 Aug; 49(33):7210-7. PubMed ID: 20712378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli.
    Martí-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM
    Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition state model and mechanism of nucleophilic aromatic substitution reactions catalyzed by human glutathione S-transferase M1a-1a.
    Patskovsky Y; Patskovska L; Almo SC; Listowsky I
    Biochemistry; 2006 Mar; 45(12):3852-62. PubMed ID: 16548513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli glyoxalase II is a binuclear zinc-dependent metalloenzyme.
    O'Young J; Sukdeo N; Honek JF
    Arch Biochem Biophys; 2007 Mar; 459(1):20-6. PubMed ID: 17196158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and initial characterization of gamma-L-glutamyl-L-thiothreonylglycine and gamma-L-glutamyl-L-allo-thiothreonylglycine as steric probes of the active site of glyoxalase I.
    Xie XF; Creighton DJ
    Biochem Biophys Res Commun; 1991 May; 177(1):252-8. PubMed ID: 2043110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases.
    Bernat BA; Laughlin LT; Armstrong RN
    Biochemistry; 1997 Mar; 36(11):3050-5. PubMed ID: 9115979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of efficiency in the glyoxalase pathway.
    Creighton DJ; Migliorini M; Pourmotabbed T; Guha MK
    Biochemistry; 1988 Sep; 27(19):7376-84. PubMed ID: 3207683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues.
    Hrmova M; Fincher GB
    Carbohydr Res; 2007 Sep; 342(12-13):1613-23. PubMed ID: 17548065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.