These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Regulation of guanylyl cyclase by intracellular Ca2+ in relation to the infectivity of the protozoan parasite, Leishmania donovani. Karmakar S; Ukil A; Mukherjee S; Das PK Int J Biochem Cell Biol; 2006; 38(8):1277-89. PubMed ID: 16507348 [TBL] [Abstract][Full Text] [Related]
4. Functional characterization of nitric oxide and YC-1 activation of soluble guanylyl cyclase: structural implication for the YC-1 binding site? Lamothe M; Chang FJ; Balashova N; Shirokov R; Beuve A Biochemistry; 2004 Mar; 43(11):3039-48. PubMed ID: 15023055 [TBL] [Abstract][Full Text] [Related]
5. NO activation of guanylyl cyclase. Russwurm M; Koesling D EMBO J; 2004 Nov; 23(22):4443-50. PubMed ID: 15510222 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of rat lung soluble guanylate cyclase on alkyl-agarose gels. Garbers DL J Cyclic Nucleotide Res; 1978 Aug; 4(4):271-9. PubMed ID: 31372 [TBL] [Abstract][Full Text] [Related]
7. Tyrphostins are inhibitors of guanylyl and adenylyl cyclases. Jaleel M; Shenoy AR; Visweswariah SS Biochemistry; 2004 Jun; 43(25):8247-55. PubMed ID: 15209521 [TBL] [Abstract][Full Text] [Related]
8. Calcium/calmodulin-dependent nitric oxide synthase activity in the CNS of Aplysia californica: biochemical characterization and link to cGMP pathways. Bodnárová M; Martásek P; Moroz LL J Inorg Biochem; 2005 Apr; 99(4):922-8. PubMed ID: 15811509 [TBL] [Abstract][Full Text] [Related]
9. Biochemical and pharmacological characterization of P-site inhibitors on homodimeric guanylyl cyclase domain from natriuretic peptide receptor-A. Joubert S; McNicoll N; De Léan A Biochem Pharmacol; 2007 Apr; 73(7):954-63. PubMed ID: 17196175 [TBL] [Abstract][Full Text] [Related]
10. BAY 41-2272, a potent activator of soluble guanylyl cyclase, stimulates calcium elevation and calcium-activated potassium current in pituitary GH cells. Liu YC; Wu SN Clin Exp Pharmacol Physiol; 2005 Dec; 32(12):1078-87. PubMed ID: 16445574 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic characterization of the HDV genomic ribozyme: classifying the catalytic and structural metal ion sites within a multichannel reaction mechanism. Nakano S; Cerrone AL; Bevilacqua PC Biochemistry; 2003 Mar; 42(10):2982-94. PubMed ID: 12627964 [TBL] [Abstract][Full Text] [Related]
12. Studying the structure and regulation of soluble guanylyl cyclase. Koesling D Methods; 1999 Dec; 19(4):485-93. PubMed ID: 10581148 [TBL] [Abstract][Full Text] [Related]
13. Regulation of synthesis of guanosine 3':5'-cyclic monophosphate in neuroblastoma cells. Bartfai T; Breakefield XO; Greengard P Biochem J; 1978 Oct; 176(1):119-27. PubMed ID: 31871 [TBL] [Abstract][Full Text] [Related]
14. Nitric oxide-dependent and independent down-regulation of NO-sensitive guanylyl cyclase in neural cells. Sardón T; Baltrons MA; García A Toxicol Lett; 2004 Apr; 149(1-3):75-83. PubMed ID: 15093251 [TBL] [Abstract][Full Text] [Related]
15. Solubilization of guanylyl cyclase from bovine rod outer segments and effects of lowering Ca2+ and nitro compounds. Horio Y; Murad F J Biol Chem; 1991 Feb; 266(6):3411-5. PubMed ID: 1671674 [TBL] [Abstract][Full Text] [Related]
16. Ca2+ and Mg2+ binding properties of GCAP-1. Evidence that Mg2+-bound form is the physiological activator of photoreceptor guanylyl cyclase. Peshenko IV; Dizhoor AM J Biol Chem; 2006 Aug; 281(33):23830-41. PubMed ID: 16793776 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of receptor-stimulated guanylyl cyclase by intracellular calcium ions in Dictyostelium cells. Valkema R; Van Haastert PJ Biochem Biophys Res Commun; 1992 Jul; 186(1):263-8. PubMed ID: 1352966 [TBL] [Abstract][Full Text] [Related]
18. Metal ion binding and enzymatic mechanism of Methanococcus jannaschii RNase HII. Lai B; Li Y; Cao A; Lai L Biochemistry; 2003 Jan; 42(3):785-91. PubMed ID: 12534291 [TBL] [Abstract][Full Text] [Related]
19. Evidence of a Ca(2+)-(*)NO-cGMP signaling pathway controlling zoospore biogenesis in the aquatic fungus Blastocladiella emersonii. Vieira AL; Linares E; Augusto O; Gomes SL Fungal Genet Biol; 2009 Aug; 46(8):575-84. PubMed ID: 19393757 [TBL] [Abstract][Full Text] [Related]