BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11368216)

  • 1. Feasibility of using metals to remediate water containing TCE.
    Cheng SF; Wu SC
    Chemosphere; 2001 Jun; 43(8):1023-8. PubMed ID: 11368216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The enhancement methods for the degradation of TCE by zero-valent metals.
    Cheng SF; Wu SC
    Chemosphere; 2000 Oct; 41(8):1263-70. PubMed ID: 10901257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive dechlorination of TCE by zero valent bimetals.
    Kim YH; Carraway ER
    Environ Technol; 2003 Jan; 24(1):69-75. PubMed ID: 12641254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation.
    Kao CM; Chen SC; Su MC
    Chemosphere; 2001 Aug; 44(5):925-34. PubMed ID: 11513425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient degradation of trichloroethylene in groundwater based on peroxymonosulfate activation by bentonite supported Fe/Ni bimetallic nanoparticle.
    Li Z; Luo S; Yang Y; Chen J
    Chemosphere; 2019 Feb; 216():499-506. PubMed ID: 30384319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions.
    Parshetti GK; Doong RA
    Chemosphere; 2012 Jan; 86(4):392-9. PubMed ID: 22115467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe.
    Wei J; Qian Y; Liu W; Wang L; Ge Y; Zhang J; Yu J; Ma X
    J Environ Sci (China); 2014 May; 26(5):1162-70. PubMed ID: 25079647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions.
    Barnes RJ; Riba O; Gardner MN; Scott TB; Jackman SA; Thompson IP
    Chemosphere; 2010 Apr; 79(4):448-54. PubMed ID: 20156632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting humic-nickel complex mediated reduction of trichloroethene in homogeneous aqueous solution.
    Ma HA; O'Loughlin EJ; Burris DR
    Environ Sci Technol; 2001 Feb; 35(4):717-24. PubMed ID: 11349283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect of nickel ions on the coupled dechlorination of trichloroethylene and 2,4-dichlorophenol by Fe/TiO₂ nanocomposites in the presence of UV light under anoxic conditions.
    Parshetti GK; Doong RA
    Water Res; 2011 Aug; 45(14):4198-210. PubMed ID: 21683974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ORC-GAC-Fe0 system for the remediation of trichloroethylene and monochlorobenzene contaminated aquifer: 1. Adsorption and degradation.
    Lin Q; Chen YX; Plagentz V; Schäfer D; Dahmke A
    J Environ Sci (China); 2004; 16(1):108-12. PubMed ID: 14971463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of trichloroethylene degradation by starch supported Fe/Ni nanoparticles via response surface methodology.
    Nikroo R; Alemzadeh I; Vossoughi M; Haddadian K
    Water Sci Technol; 2016; 73(4):935-46. PubMed ID: 26901738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone.
    Verginelli I; Capobianco O; Hartog N; Baciocchi R
    J Contam Hydrol; 2017 Feb; 197():50-61. PubMed ID: 28109630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas phase reduction of chlorinated VOCs by zero valent iron.
    Uludag-Demirer S; Bowers AR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001 Sep; 36(8):1535-47. PubMed ID: 11597112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon isotope fractionation during abiotic reductive dehalogenation of trichloroethene (TCE).
    Bill M; Schüth C; Barth JA; Kalin RM
    Chemosphere; 2001 Aug; 44(5):1281-6. PubMed ID: 11513419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of trichloroethylene using iron, bimetals and trimetals.
    Chao KP; Ong SK; Fryzek T; Yuan W; Braida W
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1536-42. PubMed ID: 22702813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical investigation of the rate-limiting mechanisms for trichloroethylene and carbon tetrachloride reduction at iron surfaces.
    Li T; Farrell J
    Environ Sci Technol; 2001 Sep; 35(17):3560-5. PubMed ID: 11563664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal.
    Butler EC; Hayes KF
    Environ Sci Technol; 2001 Oct; 35(19):3884-91. PubMed ID: 11642448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems.
    Dries J; Bastiaens L; Springael D; Agathos SN; Diels L
    Environ Sci Technol; 2005 Nov; 39(21):8460-5. PubMed ID: 16294888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.