BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 11368222)

  • 1. Development of a biobarrier for the remediation of PCE-contaminated aquifer.
    Kao CM; Chen SC; Liu JK
    Chemosphere; 2001 Jun; 43(8):1071-8. PubMed ID: 11368222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies.
    Kao CM; Chen SC; Wang JY; Chen YL; Lee SZ
    Water Res; 2003 Jan; 37(1):27-38. PubMed ID: 12465785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation.
    Kao CM; Chen SC; Su MC
    Chemosphere; 2001 Aug; 44(5):925-34. PubMed ID: 11513425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of pulsed and continuous addition of H2 gas via membranes for stimulating PCE biodegradation in soil columns.
    Ma X; Novak PJ; Semmens MJ; Clapp LW; Hozalski RM
    Water Res; 2006 Mar; 40(6):1155-66. PubMed ID: 16499946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced PCE dechlorination by biobarrier systems under different redox conditions.
    Kao CM; Chen YL; Chen SC; Yeh TY; Wu WS
    Water Res; 2003 Dec; 37(20):4885-94. PubMed ID: 14604634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions.
    Vogel TM; McCarty PL
    Appl Environ Microbiol; 1985 May; 49(5):1080-3. PubMed ID: 3923927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study.
    Aulenta F; Bianchi A; Majone M; Petrangeli Papini M; Potalivo M; Tandoi V
    Environ Int; 2005 Feb; 31(2):185-90. PubMed ID: 15661281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of polyethylene hollow-fiber membranes for hydrogen delivery to support reductive dechlorination in a soil column.
    Ma X; Novak PJ; Clapp LW; Semmens MJ; Hozalski RM
    Water Res; 2003 Jul; 37(12):2905-18. PubMed ID: 12767293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ biodegradation of tetrachloroethene and trichloroethene in contaminated aquifers monitored by stable isotope fractionation.
    Vieth A; Müller J; Strauch G; Kästner M; Gehre M; Meckenstock RU; Richnow HH
    Isotopes Environ Health Stud; 2003 Jun; 39(2):113-24. PubMed ID: 12872803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ remediation of tetrachloroethylene and its intermediates in groundwater using an anaerobic/aerobic permeable reactive barrier.
    Liu S; Yang Q; Yang Y; Ding H; Qi Y
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26615-26622. PubMed ID: 28956245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ORC-GAC-Fe0 system for the remediation of trichloroethylene and monochlorobenzene contaminated aquifer: 1. Adsorption and degradation.
    Lin Q; Chen YX; Plagentz V; Schäfer D; Dahmke A
    J Environ Sci (China); 2004; 16(1):108-12. PubMed ID: 14971463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Dechlorination of chlorinated ethenes under different redox conditions].
    Lu X; Li G; Zhang X; Zhang W
    Huan Jing Ke Xue; 2002 Mar; 23(2):29-33. PubMed ID: 12048814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete reductive dechlorination of trichloroethene by a groundwater microbial consortium.
    Bolesch DG; Nielsen RB; Keasling JD
    Ann N Y Acad Sci; 1997 Nov; 829():97-102. PubMed ID: 9472315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete remediation of PCE contaminated unsaturated soils by sequential anaerobic-aerobic bioventing.
    Mihopoulos PG; Suidan MT; Sayles GD
    Water Sci Technol; 2001; 43(5):365-72. PubMed ID: 11379154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous-flow column study of reductive dehalogenation of PCE upon bioaugmentation with the Evanite enrichment culture.
    Azizian MF; Behrens S; Sabalowsky A; Dolan ME; Spormann AM; Semprini L
    J Contam Hydrol; 2008 Aug; 100(1-2):11-21. PubMed ID: 18550206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of PCE and TCE in landfill leachate predicted from concentrations of molecular hydrogen: a case study.
    Gonsoulin ME; Wilson BH; Wilson JT
    Biodegradation; 2004 Dec; 15(6):475-85. PubMed ID: 15563003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous anaerobic transformation of tetrachloroethene and carbon tetrachloride in a continuous flow column.
    Azizian MF; Semprini L
    J Contam Hydrol; 2016 Jul; 190():58-68. PubMed ID: 27183341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.
    Kret E; Kiecak A; Malina G; Nijenhuis I; Postawa A
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9877-88. PubMed ID: 25647491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE.
    Adamson DT; McDade JM; Hughes JB
    Environ Sci Technol; 2003 Jun; 37(11):2525-33. PubMed ID: 12831039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.