BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11369201)

  • 1. Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis.
    Marshall WF; Marko JF; Agard DA; Sedat JW
    Curr Biol; 2001 Apr; 11(8):569-78. PubMed ID: 11369201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis.
    Civelekoglu-Scholey G; Sharp DJ; Mogilner A; Scholey JM
    Biophys J; 2006 Jun; 90(11):3966-82. PubMed ID: 16533843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle.
    Rieder CL; Salmon ED
    J Cell Biol; 1994 Feb; 124(3):223-33. PubMed ID: 8294508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos.
    Sharp DJ; Rogers GC; Scholey JM
    Nat Cell Biol; 2000 Dec; 2(12):922-30. PubMed ID: 11146657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The force for poleward chromosome motion in Haemanthus cells acts along the length of the chromosome during metaphase but only at the kinetochore during anaphase.
    Khodjakov A; Cole RW; Bajer AS; Rieder CL
    J Cell Biol; 1996 Mar; 132(6):1093-104. PubMed ID: 8601587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin.
    Endow SA; Henikoff S; Soler-Niedziela L
    Nature; 1990 May; 345(6270):81-3. PubMed ID: 1691829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro.
    Brouhard GJ; Hunt AJ
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13903-8. PubMed ID: 16174726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanomolecular model for the movement of chromosomes during mitosis driven by a minimal kinetochore bicyclic cascade.
    Shtylla B; Keener JP
    J Theor Biol; 2010 Apr; 263(4):455-70. PubMed ID: 20043924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis.
    Mitchison TJ; Salmon ED
    J Cell Biol; 1992 Nov; 119(3):569-82. PubMed ID: 1400593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of mitotic protein dynamics and function in Drosophila embryos by live cell imaging and quantitative modeling.
    Brust-Mascher I; Civelekoglu-Scholey G; Scholey JM
    Methods Mol Biol; 2014; 1136():3-30. PubMed ID: 24633790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos.
    Hiraoka Y; Agard DA; Sedat JW
    J Cell Biol; 1990 Dec; 111(6 Pt 2):2815-28. PubMed ID: 2125300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle.
    Rieder CL; Davison EA; Jensen LC; Cassimeris L; Salmon ED
    J Cell Biol; 1986 Aug; 103(2):581-91. PubMed ID: 3733881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three rows gene of Drosophila melanogaster encodes a novel protein that is required for chromosome disjunction during mitosis.
    D'Andrea RJ; Stratmann R; Lehner CF; John UP; Saint R
    Mol Biol Cell; 1993 Nov; 4(11):1161-74. PubMed ID: 8305737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length.
    Hays TS; Wise D; Salmon ED
    J Cell Biol; 1982 May; 93(2):374-89. PubMed ID: 7096444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chromokinesin, KLP3A, dives mitotic spindle pole separation during prometaphase and anaphase and facilitates chromatid motility.
    Kwon M; Morales-Mulia S; Brust-Mascher I; Rogers GC; Sharp DJ; Scholey JM
    Mol Biol Cell; 2004 Jan; 15(1):219-33. PubMed ID: 14528012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule flux and sliding in mitotic spindles of Drosophila embryos.
    Brust-Mascher I; Scholey JM
    Mol Biol Cell; 2002 Nov; 13(11):3967-75. PubMed ID: 12429839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spindle mechanics and dynamics during mitosis in Drosophila.
    Kwon M; Scholey JM
    Trends Cell Biol; 2004 Apr; 14(4):194-205. PubMed ID: 15066637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The distribution of polar ejection forces determines the amplitude of chromosome directional instability.
    Ke K; Cheng J; Hunt AJ
    Curr Biol; 2009 May; 19(10):807-15. PubMed ID: 19446456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assays for mitotic chromosome condensation in live yeast and mammalian cells.
    Neurohr G; Gerlich DW
    Chromosome Res; 2009; 17(2):145-54. PubMed ID: 19308697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional coordination of three mitotic motors in Drosophila embryos.
    Sharp DJ; Brown HM; Kwon M; Rogers GC; Holland G; Scholey JM
    Mol Biol Cell; 2000 Jan; 11(1):241-53. PubMed ID: 10637305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.