BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 11369851)

  • 1. In vivo carbamylation and acetylation of water-soluble human lens alphaB-crystallin lysine 92.
    Lapko VN; Smith DL; Smith JB
    Protein Sci; 2001 Jun; 10(6):1130-6. PubMed ID: 11369851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shotgun identification of protein modifications from protein complexes and lens tissue.
    MacCoss MJ; McDonald WH; Saraf A; Sadygov R; Clark JM; Tasto JJ; Gould KL; Wolters D; Washburn M; Weiss A; Clark JI; Yates JR
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):7900-5. PubMed ID: 12060738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggrelyte-2 promotes protein solubility and decreases lens stiffness through lysine acetylation and disulfide reduction: Implications for treating presbyopia.
    Panja S; Nahomi RB; Rankenberg J; Michel CR; Gaikwad H; Nam MH; Nagaraj RH
    Aging Cell; 2023 Apr; 22(4):e13797. PubMed ID: 36823285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The absence of SIRT3 and SIRT5 promotes the acetylation of lens proteins and improves the chaperone activity of α-crystallin in mouse lenses.
    Nandi SK; Nahomi RB; Harris PS; Michel CR; Fritz KS; Nagaraj RH
    Exp Eye Res; 2019 May; 182():1-9. PubMed ID: 30849386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small heat shock protein speciation: novel non-canonical 44 kDa HspB5-related protein species in rat and human tissues.
    Benndorf R; Gilmont RR; Hirano S; Ransom RF; Jungblut PR; Bommer M; Goldman JE; Welsh MJ
    Cell Stress Chaperones; 2018 Sep; 23(5):813-826. PubMed ID: 29542021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms and consequences of carbamoylation.
    Delanghe S; Delanghe JR; Speeckaert R; Van Biesen W; Speeckaert MM
    Nat Rev Nephrol; 2017 Sep; 13(9):580-593. PubMed ID: 28757635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective Effects of Acetylation on the Pathological Reactions of the Lens Crystallins with Homocysteine Thiolactone.
    Moafian Z; Khoshaman K; Oryan A; Kurganov BI; Yousefi R
    PLoS One; 2016; 11(10):e0164139. PubMed ID: 27706231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of αA- and αB-crystallins via phosphorylation in cellular homeostasis.
    Thornell E; Aquilina A
    Cell Mol Life Sci; 2015 Nov; 72(21):4127-37. PubMed ID: 26210153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic potential of α-crystallin.
    Nagaraj RH; Nahomi RB; Mueller NH; Raghavan CT; Ammar DA; Petrash JM
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):252-7. PubMed ID: 25840354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein carbamylation in kidney disease: pathogenesis and clinical implications.
    Kalim S; Karumanchi SA; Thadhani RI; Berg AH
    Am J Kidney Dis; 2014 Nov; 64(5):793-803. PubMed ID: 25037561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous carbamylation of renal medullary proteins.
    Claxton JS; Sandoval PC; Liu G; Chou CL; Hoffert JD; Knepper MA
    PLoS One; 2013; 8(12):e82655. PubMed ID: 24386107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylation of lysine 92 improves the chaperone and anti-apoptotic activities of human αB-crystallin.
    Nahomi RB; Huang R; Nandi SK; Wang B; Padmanabha S; Santhoshkumar P; Filipek S; Biswas A; Nagaraj RH
    Biochemistry; 2013 Nov; 52(45):8126-38. PubMed ID: 24128140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The combined effect of acetylation and glycation on the chaperone and anti-apoptotic functions of human α-crystallin.
    Nahomi RB; Oya-Ito T; Nagaraj RH
    Biochim Biophys Acta; 2013 Jan; 1832(1):195-203. PubMed ID: 22982407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the preferentially targeted proteins by carbamylation during whole lens incubation by using radio-labelled potassium cyanate and mass spectrometry.
    Yan H; Zhang J; Harding JJ
    Int J Ophthalmol; 2010; 3(2):104-11. PubMed ID: 22553530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylation of αA-crystallin in the human lens: effects on structure and chaperone function.
    Nagaraj RH; Nahomi RB; Shanthakumar S; Linetsky M; Padmanabha S; Pasupuleti N; Wang B; Santhoshkumar P; Panda AK; Biswas A
    Biochim Biophys Acta; 2012 Feb; 1822(2):120-9. PubMed ID: 22120592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial analysis of human lens aquaporin-0 post-translational modifications by MALDI mass spectrometry tissue profiling.
    Gutierrez DB; Garland D; Schey KL
    Exp Eye Res; 2011 Dec; 93(6):912-20. PubMed ID: 22036630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential abundant ion fragmentation analysis (SAIFA): an alternative approach for phosphopeptide identification using an ion trap mass spectrometer.
    Chesnik M; Halligan B; Olivier M; Mirza SP
    Anal Biochem; 2011 Nov; 418(2):197-203. PubMed ID: 21855524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteomics characterization of novel phosphorylated sites of lens proteins from normal and cataractous human eye lenses.
    Huang CH; Wang YT; Tsai CF; Chen YJ; Lee JS; Chiou SH
    Mol Vis; 2011 Jan; 17():186-98. PubMed ID: 21264232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tale of protein lysine acetylation in the cytoplasm.
    Sadoul K; Wang J; Diagouraga B; Khochbin S
    J Biomed Biotechnol; 2011; 2011():970382. PubMed ID: 21151618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible post-translational carboxylation modulates the enzymatic activity of N-acetyl-L-ornithine transcarbamylase.
    Li Y; Yu X; Ho J; Fushman D; Allewell NM; Tuchman M; Shi D
    Biochemistry; 2010 Aug; 49(32):6887-95. PubMed ID: 20695527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.