These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11370355)

  • 1. Convergence criteria for scattering models of ultrasonic wave propagation in suspensions of particles.
    O'Neill TJ; Tebbutt JS; Challis RE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):419-24. PubMed ID: 11370355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and experimental study of the influence of the particle size distribution on acoustic wave properties of strongly inhomogeneous media.
    Vander Meulen F; Feuillard G; Matar OB; Levassort F; Lethiecq M
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2301-7. PubMed ID: 11757920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic wave propagation in concentrated slurries--the modelling problem.
    Challis RE; Pinfield VJ
    Ultrasonics; 2014 Sep; 54(7):1737-44. PubMed ID: 24784462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic waves in diluted and densified suspensions.
    Jan Kowalski S
    Ultrasonics; 2004 Dec; 43(2):101-11. PubMed ID: 15530984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical prediction of ultrasonic attenuation in concentrated emulsions and suspensions using Monte Carlo method.
    Huang B; Fan F; Li Y; Su M
    Ultrasonics; 2019 Apr; 94():218-226. PubMed ID: 30287073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experiment and simulation for ultrasonic wave propagation in multiple-particle reinforced composites.
    Geng X; Zhang C; Zhou B; Zhang J; Luo G; Shen Q
    Ultrasonics; 2023 Jul; 132():106971. PubMed ID: 36870124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective viscosity in a wave propagation model for ultrasonic particle sizing in non-dilute suspensions.
    Al-Lashi RS; Challis RE
    J Acoust Soc Am; 2014 Oct; 136(4):1583-90. PubMed ID: 25324062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An iterative fullwave simulation approach to multiple scattering in media with randomly distributed microbubbles.
    Joshi A; Lindsey BD; Dayton PA; Pinton G; Muller M
    Phys Med Biol; 2017 May; 62(10):4202-4217. PubMed ID: 28266925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of a time domain simulation of high frequency ultrasonic propagation in a suspension of rigid particles.
    Galaz B; Haïat G; Berti R; Taulier N; Amman JJ; Urbach W
    J Acoust Soc Am; 2010 Jan; 127(1):148-54. PubMed ID: 20058958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic ECAH: Scattering analysis of spherical particles in suspension with viscoelasticity.
    Tsuji K; Nakanishi H; Norisuye T
    Ultrasonics; 2021 Aug; 115():106463. PubMed ID: 34051490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling viscous boundary layer dissipation effects in liquid surrounding individual solid nano and micro-particles in an ultrasonic field.
    Forrester DM; Huang J; Pinfield VJ
    Sci Rep; 2019 Mar; 9(1):4956. PubMed ID: 30894589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound attenuation and phase velocity of micrometer-sized particle suspensions with viscous and thermal losses.
    Mori H; Norisuye T; Nakanishi H; Tran-Cong-Miyata Q
    Ultrasonics; 2018 Feb; 83():171-178. PubMed ID: 28389013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of ultrasonic wave propagation in concrete based on a two-dimensional numerical model validated analytically and experimentally.
    Yu T; Chaix JF; Audibert L; Komatitsch D; Garnier V; Hénault JM
    Ultrasonics; 2019 Feb; 92():21-34. PubMed ID: 30218897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainties in ultrasonic particle sizing in solid-in-liquid suspensions.
    Al-Lashi RS; Challis RE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1835-45. PubMed ID: 25389162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental evaluation of two effective medium theories for ultrasonic wave propagation in concrete.
    Chaix JF; Rossat M; Garnier V; Corneloup G
    J Acoust Soc Am; 2012 Jun; 131(6):4481-90. PubMed ID: 22712921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polydisperse particle size characterization by ultrasonic attenuation spectroscopy in the micrometer range.
    Richter A; Babick F; Stintz M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e483-90. PubMed ID: 16808945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.
    Baynes AB; Godin OA
    J Acoust Soc Am; 2017 Dec; 142(6):3613. PubMed ID: 29289067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation characteristics of interface waves between a porous medium and a sediment-containing two-phase fluid.
    Han Q; Qi L; Shan M; Yin C; Jiang X; Zhu C
    Ultrasonics; 2017 Nov; 81():73-80. PubMed ID: 28595165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computer model for simulating ultrasonic scattering in biological tissues with high scatterer concentration.
    Zhang J; Rose JL; Shung KK
    Ultrasound Med Biol; 1994; 20(9):903-13. PubMed ID: 7886850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Flocculation on the Propagation of Ultrasound in Dilute Kaolin Slurries.
    Austin JC; Challis RE
    J Colloid Interface Sci; 1998 Oct; 206(1):146-157. PubMed ID: 9761638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.