These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11370368)

  • 1. Influence of metal thickness on phase velocity and thermal sensitivity of SAW devices.
    Henry-Briot E; Ballandras S; Marianneau G; Martin G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):538-46. PubMed ID: 11370368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface and pseudo surface acoustic waves in langatate: predictions and measurements.
    Pereira da Cunha M; Malocha DC; Adler EL; Casey KJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Sep; 49(9):1291-9. PubMed ID: 12243580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise modeling of complex SAW structures using a perturbation method hybridized with a finite element analysis.
    Ballandras S; Bigler E
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):567-73. PubMed ID: 18244208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new triply rotated quartz cut for the fabrication of low loss IF SAW filters.
    Ballandras S; Steichen W; Briot E; Solal M; Doisy M; Hodé JM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):121-6. PubMed ID: 14995023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric Nonlinear Model for Prediction of Frequency-Temperature Behavior of SAW Devices for Nanosensor Applications.
    Chen Z; Zhang Q; Li C; Fu S; Qiu X; Wang X; Wu H
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A perturbation method for modeling the thermal sensitivity of surface transverse waves.
    Gavignet E; Ballandras S; Bigler E
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):201-7. PubMed ID: 18244118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on recent quartz-like materials for SAW applications.
    Da Cunha MP; De Azevedo Fagundes S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1583-90. PubMed ID: 18244357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-sensitive cuts for surface acoustic waves in quartz.
    Ma W; Shi W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):333-5. PubMed ID: 11367803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of contributions of nonlinear material constants to temperature-induced velocity shifts of quartz surface acoustic wave resonators.
    Zhang H; Kosinski JA; Zuo L
    Ultrasonics; 2016 Sep; 71():189-193. PubMed ID: 27392205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mode Analysis of Pt/LGS Surface Acoustic Wave Devices.
    Xu H; Jin H; Dong S; Song X; Chen J; Xuan W; Huang S; Shi L; Luo J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh-Frequency Surface Acoustic Wave Sensors with Giant Mass-Loading Effects on Electrodes.
    Chen Z; Zhou J; Tang H; Liu Y; Shen Y; Yin X; Zheng J; Zhang H; Wu J; Shi X; Chen Y; Fu Y; Duan H
    ACS Sens; 2020 Jun; 5(6):1657-1664. PubMed ID: 32390428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimorph material/structure designs for high sensitivity flexible surface acoustic wave temperature sensors.
    Tao R; Hasan SA; Wang HZ; Zhou J; Luo JT; McHale G; Gibson D; Canyelles-Pericas P; Cooke MD; Wood D; Liu Y; Wu Q; Ng WP; Franke T; Fu YQ
    Sci Rep; 2018 Jun; 8(1):9052. PubMed ID: 29899347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress-sensitivity mapping for surface acoustic waves on quartz.
    Bigler E; Hauden D; Theobald G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(1):57-62. PubMed ID: 18284950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Performance of ZnO/SiO
    Su R; Fu S; Shen J; Chen Z; Lu Z; Yang M; Wang R; Zeng F; Wang W; Song C; Pan F
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42378-42385. PubMed ID: 32830495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of shear-horizontal surface acoustic waves in different layered quartz-SiO2 structures.
    Herrmann F; Weihnacht M; Buttgenbach S
    Ultrasonics; 1999 Jun; 37(5):335-41. PubMed ID: 10499804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room temperature fabrication of ZnO/ST-cut quartz SAW UV photodetector with small temperature coefficient.
    Tsai WC; Kao HL; Liao KH; Liu YH; Lin TP; Jeng ES
    Opt Express; 2015 Feb; 23(3):2187-95. PubMed ID: 25836089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SSBW to PSAW conversion in SAW devices using heavy mechanical loading.
    Fusero Y; Ballandras S; Desbois J; Hodé JM; Ventura P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jun; 49(6):805-14. PubMed ID: 12075973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface acoustic wave properties of proton-exchanged LiNbO3 waveguides with SiO2 film.
    Kao KS; Cheng CC; Chung CJ; Chen YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar; 52(3):503-6. PubMed ID: 15857060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAW Temperature Sensor on Quartz.
    Zhgoon S; Shvetsov A; Ancev I; Bogoslovsky S; Sapozhnikov G; Trokhimets K; Derkach M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1066-75. PubMed ID: 26067041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature Behavior of SAW Resonators Based on LiNbO₃/Quartz and LiTaO₃/Quartz Substrates.
    Naumenko NF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3430-3437. PubMed ID: 34129496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.